Thanks to Paul Lewis and Joe Felsenstein for the use of slides

Review

- Hennigian logic reconstructs the tree if we know **polarity** of characters and there is **no homoplasy**
- UPGMA infers a tree from a distance matrix:
 - groups based on **similarity**
 - fails to give the correct tree if rates of character evolution vary much
- Modern distance-based approaches:
 - find trees and branch lengths: patristic distances \approx distances from character data.
 - do **not** use all of the information in the data.
- Parsimony:
 - prefer the tree that **requires** the fewest character state changes.
 Minimize the number of times you invoke homoplasy to explain the data.
 - can work well if if homoplasy is not rare
 - fails if homoplasy very common or is concentrated on certain parts of the tree

Long branch attraction

Felsenstein, J. 1978. Cases in which
parsimony or compatibility methods will be
positively misleading. *Systematic Zoology*27: 401-410.

The probability of a parsimony informative site due to inheritance is very low, (roughly 0.0003).

Long branch attraction

Felsenstein, J. 1978. Cases in which
parsimony or compatibility methods will be
positively misleading. *Systematic Zoology*27: 401-410.

The probability of a parsimony informative site due to inheritance is very low, (roughly 0.0003).

The probability of a misleading parsimony informative site due to parallelism is much higher (roughly 0.008).

Under such a tree misleading characters are more common that characters that favor the true tree.

	Rare				Common			
taxon1	A	A	С	С	Α	A	С	С
taxon2	A	A	С	С	G	С	Т	G
taxon3	G	С	Т	G	A	А	С	С
taxon4	G	С	Т	G	G	С	Т	G

Parsimony is almost guaranteed to get this tree wrong. Inferred True

X is the data.

T is the tree.

 ν is a vector of branch lengths.

 $\Pr(X|T,\nu)$ is the *likelihood*; this is sometimes denoted $L(T,\nu)$.

Maximum likelihood: find the T and ν that gives the highest likelihood.