
Tree Searching

We’ve discussed how we rank trees

• Parsimony

• Least squares

• Minimum evolution

• Balanced minimum evolution

• Maximum likelihood (later in the course)

So we have ways of deciding what a good tree is when we see

one, but . . .

How do we find the best tree?

(or one that is good enough)
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Exhaustive Enumeration
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With the first three taxa, create the trivial unrooted tree



© 2007 by Paul O. Lewis 6

A

B C

Can add fourth 
taxon (D) to any 
of the three edges

A

D

C

B

B

D

A

C

A

B

C

D

Exhaustive Enumeration...



© 2007 by Paul O. Lewis 7

3 taxa
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Tips Number of unrooted (binary) trees
4 3
5 15
6 105
7 945
8 10,395
9 135,135

10 2,027,025
11 34,459,425
12 654,729,075
13 13,749,310,575
14 316,234,143,225
15 7,905,853,580,625
16 213,458,046,676,875
17 6,190,283,353,629,375
18 191,898,783,962,510,625
19 6,332,659,870,762,850,625
20 22,164,309,5476,699,771,875
21 8,200,794,532,637,891,559,375
22 319,830,986,772,877,770,815,625
23 13,113,070,457,687,988,603,440,625 > 21 moles of trees
24 563,862,029,680,583,509,947,946,875
25 25,373,791,335,626,257,947,657,609,375



For N taxa:

# unrooted, binary trees =

N−1∏
i=3

(2i− 3)

=

N∏
i=4

(2i− 5)

# rooted, binary trees =

N∏
i=3

(2i− 3)

= (2N − 3)(# unrooted, binary trees)



Star decomposition
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Star decomposition
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Star decomposition
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Star decomposition

• Very “greedy” – it makes the best decision at each step, but

does not try to “plan ahead”. Once a pair of species are

joined, they will not be separated.

• Neighbor-joining (Saitou and Nei, 1987) is star

decomposition under the balanced minimum evolution

criterion



Stepwise addition
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Stepwise addition

• Order-dependent (multiple random orderings can be used to

give a range of starting trees for more thorough searches).

• Taxa joined initially may have intervening species added, but

still fairly greedy.



Branch and bound
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Branch and bound

• Guaranteed to return the best tree(s)

• Typically only a viable option for < 30 species (depends on

how clean the data is)



Trying to improve a tree

Neither stepwise addition nor star decomposition is guaranteed to return the
best tree(s), but branch-and-bound (or exhaustive searching) is frequently
infeasible.

Heuristic hill-climbing searches can work quite well:

1. Start with a tree
2. Score the tree
3. Consider a new tree within the neighborhood of the current tree:

(a) Score the new tree.
(b) If the new tree has a better tree, use it as the “current tree”
(c) Stop if there are no other trees within the neighborhood to consider.

These are not guaranteed to find even one of the optimal trees.

The most common way to explore the neighborhood of a tree is to swap
the branches of the tree to construct similar trees.



Heuristics explore “Tree Space”

Most commonly used methods

are “hill-climbers.”

Multiple optima found by

repeating searches from

different origins.

Severity of the problem

of multiple optima

depends on step size.



Nearest Neighbor Interchange (NNI)
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Nearest Neighbor Interchange (NNI)
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Subtree Pruning Regrafting (SPR) and Tree Bisection
Reconnection (TBR)
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Many other heuristic strategies proposed

• Swapping need not include all neighbors (RAxML, reconlimit in
PAUP*)

• “lazy” scoring of swaps (RAxML)

• Ignoring (at some stage) interactions between different branch swaps
(PHYML)

• Stochastic searches

– Genetic algorithms (GAML, MetaPIGA, GARLI)
– Simulated annealing

• Divide and conquer methods (the sectortial searching of Goloboff, 1999;
Rec-I-DCM3 Roshan 2004)

• Data perturbation methods (e.g. Kevin Nixon’s “ratchet”)



Population with
variation



Population with
variation

lnL calculated

-127.5

-128.1

-131.0

-131.6

-132.0



Population with
variation

lnL calculated
Fitness
calculated

0.623

 0.341

0.019

0.010

0.007



Population with
variation

lnL calculated
Fitness
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variation

lnL calculated
Fitness
calculated Selection

Mutation



Software for searching under different criteria

Fast tree searching:

• Maximum likelihood – RAxML, FastTree. GARLI, phyml,

Leaphy

• Distances – FastME (balanced minimum evolution); FastTree

(profile approximation to balanced minimum evolution);

PAUP (other distance-based criteria).

• Parsimony – TNT

http://wwwkramer.in.tum.de/exelixis/software.html
http://www.microbesonline.org/fasttree/
https://www.nescent.org/wg_garli/Main_Page
http://www.atgc-montpellier.fr/phyml/
http://www.bioinf.manchester.ac.uk/leaphy/Leaphy.htm
http://www.atgc-montpellier.fr/fastme/
http://www.microbesonline.org/fasttree/
http://paup.csit.fsu.edu/
http://www.cladistics.com/aboutTNT.html


Conclusions on searching

1. The large number of trees make it infeasible to evaluate

every tree;

2. Intuitive, hill climbing routines often perform well;

3. Repeated searching from multiple starting points helps give

you a sense of how difficult searching is for your dataset.

4. The ease of tree searching is a separate issue from statistical

support. Well-supported clades are often easy to find, but we

do not simply use the repeatability of a trees in independent

searches as a measure of support (we’ll talk about assessing

support tomorrow).
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