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1 Birth-death Markov chain notes

The state space is the non-negative integers with the only possible changes in a single instant being an
increase or decrease of 1.

If we had been working in discrete time, our difference equations would have been:
po(t) = —Aopo(t — 1)+ mpi(t—1) (1)
pi(t) = XNcpic1(t—1) — (N + pg) pi(t — 1) + pip1piva(t — 1) (2)

where \; is represents the probability of a birth if you are in state ¢ (an i — 7 + 1 transition), and pu; the
probability of a death if you are in state ¢ (an ¢ — ¢ — 1 transition). p;(¢) is the probability of being in
state i at time (or iteration) ¢.

But we were working in continuous time, so the general form of the differential equations is:

Opo(t)

ot —AoPo (t) + pip1 (t) (3)
81250 Nic1pi(t) — (N + ) pi(t) + piv1piva (t) @

where \; and p; now represent rates of births and deaths. Because we are working in continuous time, we
don’t have t — 1 representing the previous iteration, instead we make our fundamental statements based
on the instantaneous rates of change.

Frequently we use 7; to represent the equilibrium probability of being in state 7. JKK just used p; without
the () after it.

If there is an equlibrium, it will be a dynamic one. We can start by assuming that one exists and seeing
if we can solve for it. From equation 3 for state 0 we get:

0 = —Xomo+ pm (5)
Ty = ('l;(l)) T (6)

S (20) - (7)



We can use equation 4 for state 1 to get:

0 = XN—amio1 — (N + ) T + piy1Ti (8)
0 = Xomo — (A1 + p1) T + pome 9)
0 = pm — (M + p1) T+ pam (10)
0 = —\im + pame (11)
m = (é\f) T2 (12)

A AoA
Ty = <1> T = <01> o (13)
K2 12

We are building up higher values of i by balancing out the flow between the state i and i — 1. Equation (7)
expresses the relationship for state 1 in terms of its ¢ — 1 neighbor (state 0), so it may not be surprising
that we continues this and Equation (13) for mo shows up as a balance between rates with states 1 and 2.

If you continue this process you get:

AOAL - A
mo= (Mt (14)
ML - - g

T = ﬂoﬁ/\

Jj—1
=1 Hi

which is pleasingly terse.

1.1 special case: state-independent transitions rates

If A is the same for all ¢ and p is a constant for all states then Equation (15), then it can be convenient to
reparameterize into a ratio of A and u:

A
A 16
. (16)
7 Aj—l
T = WQH _ (17)
j=1 M
LA
= T - (18)
=1k
= m ] (19)
j=1
T, = 7T(]’l“i (20)

that is pleasingly even terser.

It may look like that is simple enough, but if you know A and u, you’d just have the tautology my = mg
if you plug in ¢« = 0 into equation (20). We could look up the geometric distribution in Wikipedia, or we
could use some probability theory:

L= S 1)
1=0
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because 1 X r = r, we can get cute:

=0

this enables some even further cuteness where we play with the bounds of the sum:

So:

1—r

= (1—r)rt

is the general form of the equilibrium state frequency.

1.2

special case: each individual has the same birth and death rate

(22)

(23)

(24)

(25)

(26)

If A; =i\ and p; = ipwe run into problems with Equation (15) because the flux between state 0 and state
1 is never balanced (since 0 is an absorbing state).
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