notes from the week of March 06, 2019

Contents

1 Birth-death Markov chain notes

1.1 special case: state-independent transitions rates . 2
1.2 special case: each individual has the same birth and death rate 3

1 Birth-death Markov chain notes

The state space is the non-negative integers with the only possible changes in a single instant being an increase or decrease of 1.

If we had been working in discrete time, our difference equations would have been:

\begin{align*}
p_0(t) &= -\lambda_0 p_0(t - 1) + \mu_1 p_1(t - 1) \\
p_i(t) &= \lambda_{i-1} p_{i-1}(t - 1) - (\lambda_i + \mu_i) p_i(t - 1) + \mu_{i+1} p_{i+1}(t - 1)
\end{align*}

where \(\lambda_i \) represents the probability of a birth if you are in state \(i \) (an \(i \to i + 1 \) transition), and \(\mu_i \) the probability of a death if you are in state \(i \) (an \(i \to i - 1 \) transition). \(p_i(t) \) is the probability of being in state \(i \) at time (or iteration) \(t \).

But we were working in continuous time, so the general form of the differential equations is:

\begin{align*}
\frac{\partial p_0(t)}{\partial t} &= -\lambda_0 p_0(t) + \mu_1 p_1(t) \\
\frac{\partial p_i(t)}{\partial t} &= \lambda_{i-1} p_{i-1}(t) - (\lambda_i + \mu_i) p_i(t) + \mu_{i+1} p_{i+1}(t)
\end{align*}

where \(\lambda_i \) and \(\mu_i \) now represent rates of births and deaths. Because we are working in continuous time, we don’t have \(t - 1 \) representing the previous iteration, instead we make our fundamental statements based on the instantaneous rates of change.

Frequently we use \(\pi_i \) to represent the equilibrium probability of being in state \(i \). JKK just used \(p_i \) without the \((t) \) after it.

If there is an equilibrium, it will be a dynamic one. We can start by assuming that one exists and seeing if we can solve for it. From equation 3 for state 0 we get:

\begin{align*}
0 &= -\lambda_0 \pi_0 + \mu_1 \pi_1 \\
\pi_0 &= \left(\frac{\mu_1}{\lambda_0} \right) \pi_1 \\
\pi_1 &= \left(\frac{\lambda_0}{\mu_1} \right) \pi_0
\end{align*}
We use equation 4 for state 1 to get:

\[0 = \lambda_i \pi_i - \pi_{i-1} - (\lambda_i + \mu_i) \pi_i + \mu_{i+1} \pi_{i+1} \]
\[0 = \lambda_0 \pi_0 - (\lambda_1 + \mu_1) \pi_1 + \mu_2 \pi_2 \]
\[0 = \mu_1 \pi_1 - (\lambda_1 + \mu_1) \pi_1 + \mu_2 \pi_2 \]
\[0 = -\lambda_1 \pi_1 + \mu_2 \pi_2 \]
\[\pi_1 = \left(\frac{\mu_2}{\lambda_1} \right) \pi_2 \]
\[\pi_2 = \left(\frac{\lambda_1}{\mu_2} \right) \pi_1 = \left(\frac{\lambda_0 \lambda_1}{\mu_1 \mu_2} \right) \pi_0 \]

We are building up higher values of \(i \) by balancing out the flow between the state \(i \) and \(i - 1 \). Equation (7) expresses the relationship for state 1 in terms of its \(i - 1 \) neighbor (state 0), so it may not be surprising that we continue this and Equation (13) for \(\pi_2 \) shows up as a balance between rates with states 1 and 2.

If you continue this process you get:

\[\pi_i = \pi_0 \left(\frac{\lambda_0 \lambda_1 \ldots \lambda_{i-1}}{\mu_1 \mu_2 \ldots \mu_i} \right) \]
\[\pi_i = \pi_0 \prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_j} \]

which is pleasingly terse.

1.1 special case: state-independent transitions rates

If \(\lambda \) is the same for all \(i \) and \(\mu \) is a constant for all states then Equation (15), then it can be convenient to reparameterize into a ratio of \(\lambda \) and \(\mu \):

\[r = \frac{\lambda}{\mu} \]
\[\pi_i = \pi_0 \prod_{j=1}^{i} \frac{\lambda_{j-1}}{\mu_j} \]
\[= \pi_0 \prod_{j=1}^{i} \frac{\lambda}{\mu} \]
\[= \pi_0 \prod_{j=1}^{i} r \]
\[\pi_i = \pi_0 r^i \]

that is pleasingly even terser.

It may look like that is simple enough, but if you know \(\lambda \) and \(\mu \), you’d just have the tautology \(\pi_0 = \pi_0 \) if you plug in \(i = 0 \) into equation (20). We could look up the geometric distribution in Wikipedia, or we could use some probability theory:

\[1 = \sum_{i=0}^{\infty} \pi_i \]

2
\[
\begin{align*}
\sum_{i=0}^{\infty} (\pi_0 r^i) &= \sum_{i=0}^{\infty} r^i & (22) \\
\pi_0 \sum_{i=0}^{\infty} r^i &= \pi_0 \sum_{i=0}^{\infty} r^i & (23)
\end{align*}
\]

because \(1 \times r = r\), we can get cute:

\[
\begin{align*}
\sum_{i=0}^{\infty} \pi_i &= \sum_{i=0}^{\infty} \pi_0 r^i & (24) \\
\pi_0 \sum_{i=0}^{\infty} (\pi_0 r^i) &= \pi_0 \sum_{i=0}^{\infty} r^{1+i} & (25) \\
\sum_{i=0}^{\infty} (\pi_0 r^{1+i}) &= \pi_0 \sum_{i=0}^{\infty} r^{1+i} & (26) \\
\sum_{i=0}^{\infty} (\pi_0 r^{1+i}) &= \pi_0 \sum_{i=0}^{\infty} r^{1+i} & (27)
\end{align*}
\]

this enables some even further cuteness where we play with the bounds of the sum:

\[
\begin{align*}
1 - r &= \pi_0 \left(\sum_{i=0}^{\infty} r^i \right) - \pi_0 \left(\sum_{i=0}^{\infty} r^{i+1} \right) & (28) \\
&= \pi_0 \left(\sum_{i=0}^{\infty} r^i - \sum_{i=1}^{\infty} r^i \right) & (29) \\
&= \pi_0 \left(r^0 + \sum_{i=1}^{\infty} r^i - \sum_{i=1}^{\infty} r^i \right) & (30) \\
&= \pi_0 & (31)
\end{align*}
\]

So:

\[\pi_i = (1 - r)r^i\]

is the general form of the equilibrium state frequency.

1.2 special case: each individual has the same birth and death rate

If \(\lambda_i = i\lambda\) and \(\mu_i = i\mu\) we run into problems with Equation (15) because the flux between state 0 and state 1 is never balanced (since 0 is an absorbing state).