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1 Birth-death Markov chain notes

The state space is the non-negative integers with the only possible changes in a single instant being an
increase or decrease of 1.

If we had been working in discrete time, our difference equations would have been:

p0(t) = −λ0p0(t− 1) + µ1p1(t− 1) (1)

pi(t) = λi−1pi−1(t− 1)− (λi + µi) pi(t− 1) + µi+1pi+1(t− 1) (2)

where λi is represents the probability of a birth if you are in state i (an i → i + 1 transition), and µi the
probability of a death if you are in state i (an i → i − 1 transition). pi(t) is the probability of being in
state i at time (or iteration) t.

But we were working in continuous time, so the general form of the differential equations is:

∂p0(t)

∂t
= −λ0p0(t) + µ1p1(t) (3)

∂pi(t)

∂t
= λi−1pi(t)− (λi + µi) pi(t) + µi+1pi+1(t) (4)

where λi and µi now represent rates of births and deaths. Because we are working in continuous time, we
don’t have t − 1 representing the previous iteration, instead we make our fundamental statements based
on the instantaneous rates of change.

Frequently we use πi to represent the equilibrium probability of being in state i. JKK just used pi without
the (t) after it.

If there is an equlibrium, it will be a dynamic one. We can start by assuming that one exists and seeing
if we can solve for it. From equation 3 for state 0 we get:

0 = −λ0π0 + µ1π1 (5)

π0 =

(
µ1
λ0

)
π1 (6)

π1 =

(
λ0
µ1

)
π0 (7)
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We can use equation 4 for state 1 to get:

0 = λi−1πi−1 − (λi + µi)πi + µi+1πi+1 (8)

0 = λ0π0 − (λ1 + µ1)π1 + µ2π2 (9)

0 = µ1π1 − (λ1 + µ1)π1 + µ2π2 (10)

0 = −λ1π1 + µ2π2 (11)

π1 =

(
µ2
λ1

)
π2 (12)

π2 =

(
λ1
µ2

)
π1 =

(
λ0λ1
µ1µ2

)
π0 (13)

We are building up higher values of i by balancing out the flow between the state i and i−1. Equation (7)
expresses the relationship for state 1 in terms of its i − 1 neighbor (state 0), so it may not be surprising
that we continues this and Equation (13) for π2 shows up as a balance between rates with states 1 and 2.

If you continue this process you get:

πi = π0

(
λ0λ1 . . . λi−1
µ1µ2 . . . µi

)
(14)

πi = π0

i∏
j=1

λj−1
µj

(15)

which is pleasingly terse.

1.1 special case: state-independent transitions rates

If λ is the same for all i and µ is a constant for all states then Equation (15), then it can be convenient to
reparameterize into a ratio of λ and µ:

r =
λ

µ
(16)

πi = π0

i∏
j=1

λj−1
µj

(17)

= π0

i∏
j=1

λ

µ
(18)

= π0

i∏
j=1

r (19)

πi = π0r
i (20)

that is pleasingly even terser.

It may look like that is simple enough, but if you know λ and µ, you’d just have the tautology π0 = π0
if you plug in i = 0 into equation (20). We could look up the geometric distribution in Wikipedia, or we
could use some probability theory:

1 =
∞∑
i=0

πi (21)
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=

∞∑
i=0

(
π0r

i
)

(22)

= π0

∞∑
i=0

ri (23)

because 1× r = r, we can get cute:

r = r
∞∑
i=0

πi (24)

= r
∞∑
i=0

(
π0r

i
)

(25)

=
∞∑
i=0

(
π0r

1+i
)

(26)

= π0

∞∑
i=0

r1+i (27)

this enables some even further cuteness where we play with the bounds of the sum:

1− r = π0

( ∞∑
i=0

ri

)
− π0

( ∞∑
i=0

ri+1

)
(28)

= π0

( ∞∑
i=0

ri −
∞∑
i=1

ri

)
(29)

= π0

(
r0 +

∞∑
i=1

ri −
∞∑
i=1

ri

)
(30)

= π0 (31)

So:
πi = (1− r)ri

is the general form of the equilibrium state frequency.

1.2 special case: each individual has the same birth and death rate

If λi = iλ and µi = iµwe run into problems with Equation (15) because the flux between state 0 and state
1 is never balanced (since 0 is an absorbing state).
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