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JC instantaneous rate matrix yet again

We estimate branch lengths in terms of expected

number of changes per site. To do this we

standardize the total rate of divergence in the Q

matrix and estimate ν = µt = 3αt for each branch.

To State

A C G T

From
A −1 1

3
1
3

1
3

State
C 1

3 −1 1
3

1
3

G 1
3

1
3 −1 1

3
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3
1
3
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3 −1



JC “state-comparison” probabilities

i and j refer to states (A, C, G, T). i 6= j:

Pr(i→ i|ν) =
1
4

+
3
4
e
−4ν
3

Pr(i→ j|ν) =
1
4
− 1

4
e
−4ν
3



CFN transition probabilities

Pr(0→ 0|ν) = Pr(1→ 1|ν) =
1
2

+
1
2
e−2ν

Pr(0→ 1|ν) = Pr(1→ 0|ν) =
1
2
− 1

2
e−2ν



“Mk” transition probabilities

k-state version of the one-rate model.

Pr(i→ i|ν) =
1
k

+
(k − 1)e−(

k
k−1)ν

k

Pr(i→ j|ν) =
1
k
− e

−( k
k−1)ν

k



Kimura (1980) model or “the K80 model”

Transitions and transversions occur at different rates:

To State

A C G T

From
A −2β − α β α β

State
C β −2β − α β α

G α β −2β − α β

T β α β −2β − α



Kimura (1980) model or “the K80 model”.
Reparameterized.

We only care about the relative rates, so we can choose one

rate to be frame of reference. This turns the 2 parameter

model into a 1 parameter form:

To State

A C G T

From
A −(2 + κ)β β κβ β

State
C β −(2 + κ)β β κβ

G κβ β −(2 + κ)β β

T β κβ β −(2 + κ)β



Kimura (1980) model or “the K80 model”.
Reparameterized again.

To State

A C G T

From
A −2− κ 1 κ 1

State
C 1 −2− κ 1 κ

G κ 1 −2− κ 1
T 1 κ 1 −2− κ



Kappa is the transititon/transversion rate ratio:

κ =
α

β

(if κ = 1 then we are back to JC).



What is the instantaneous probability of an particular

transversion?

Pr(A→ C) = Pr(A) Pr(change to C)

=
1
4

(βdt)



What is the instantaneous probability of an particular

transition?

Pr(A→ G) = Pr(A) Pr(change to G)

=
1
4

(κβdt)



There are four types of transitions:

A→ G,G→ A,C → T, T → C

and eight types of transversions:

A→ C,A→ T,G→ C,G→ T,C → A,C → G,T → A, T → G

Ti/Tv ratio =
Pr(any transition)

Pr(any transversion)
=

4
(
1
4 (κβdt)

)
8
(
1
4 (βdt)

) =
κ

2

For K2P instantaneous transition/transversion ratio is one-half

the instantaneous transition/transversion rate ratio



Kimura model change probabilities

Pr(A→ A|ν) =
1
4

(
1 + e−(

4
2+κ)ν + 2e−(

2+2κ
2+κ )ν

)

Pr(A→ G|ν) =
1
4

(
1 + e−(

4
2+κ)ν − 2e−(

2+2κ
2+κ )ν

)

Pr(A→ C|ν) =
1
4

(
1− e−(

4
2+κ)ν

)



Felsenstein 1981 model or “F81 model”

To State

A C G T

From
A − πC πG πT

State
C πA − πG πT
G πA πC − πT
T πA πC πG −



HKY 1985 model

To State

A C G T

From
A − πC κπG πT

State
C πA − πG κπT
G κπA πC − πT
T πA κπC πG −
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F84* vs. HKY85

*First used in PHYLIP in 1984, first published byKishino, H., and M. Hasegawa. 1989. Evaluation of the 
maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the 
branching order in hominoidea. Journal of Molecular Evolution 29: 170-179.

F84 model:
μ rate of process generating all types of substitutions
kμ rate of process generating only transitions
Becomes F81 model if k = 0

HKY85 model:
β rate of process generating only transversions
κβ rate of process generating only transitions
Becomes F81 model if κ = 1



General Time Reversible – GTR model

To State

A C G T

From
A − aπC bπG cπT

State
C aπA − dπG eπT
G bπA dπC − fπT
T cπA eπC fπG −

In PAUP, f = 1 indicating that G → T is the

reference rate
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Likelihood of a single sequence

12 7 7 6
G A A G T C C T T G A G A A A T A A A C T G C A C A C A C T G G

A C G T

L π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π

π π π π

=

=

GAAGTCCTTGAGAAATAAACTGCACACACTGG

First 32 nucleotides of the ψη-globin gene of gorilla:

( ) ( ) ( ) ( )ln 12 ln 7 ln 7 ln 6 lnA C G TL π π π π= + + +

We can already see by eye-balling this that the F81 model (which
allows unequal base frequencies) will fit better than the JC69 
model (which assumes equal base frequencies) because there 
are about twice as many As as there are Cs, Gs and Ts.



How can we calculate the likelihood score

Under the JC (or K2P) model:

lnL = 12 lnπA + 7 lnπC + 7 lnπG + 6 lnπT
= 12 ln 0.25 + 7 ln 0.25 + 7 ln 0.25 + 6 ln 0.25

= −44.361



How can we calculate the likelihood score

Under the F81 (or HKY or GTR) model:

lnL = 12 lnπA + 7 lnπC + 7 lnπG + 6 lnπT

But what are the values for the parameters:

πA, πC, πG, πT ?

In many cases we refer to these parameters as

“nuisance parameters.” They must be specified

in order to calculate the likelihood, but we are not

interested in them by themselves.



ML parameter estimates

We can find the maximum likelihood estimates of the

parameters to give us the ML score: the maximum likelihood

obtainable under this model:

lnL = 12 lnπA + 7 lnπC + 7 lnπG + 6 lnπT

= 12 ln π̂A + 7 ln π̂C + 7 ln π̂G + 6 ln π̂T

= 12 ln 0.375 + 7 ln 0.21875 + 7 ln 0.21875 + 6 ln 0.1875

= −43.091

But how did I get the numbers to fill for the parameters? How

do we know that π̂A = 0.375 and π̂C = 0.21875



ML parameter estimates

We might guess that:

π̂A =
12
32

= 0.375

π̂C =
7
32

= 0.21875

π̂G =
7
32

= 0.21875

π̂T =
6
32

= 0.1875

but how do we prove it?



ML parameter estimates

For simple problems we solve for the point in parameter space

for which derivatives with respect to all parameters are 0 (we

also have to consider boundary points).

We would have to do constrained optimization because

πA + πC + πG + πT = 1

and that is a pain.



ML parameter estimates

We can reparameterize:

r = πA + πG

a =
πA

πA + πG

c =
πC

πC + πT

and always recover the original parameters:

πA = ra

πG = r(1− a)
πC = (1− r)c
πT = (1− r)(1− c)



ML parameter estimates

lnL = 12 lnπA + 7 lnπC + 7 lnπG + 6 lnπT

= 12 ln [ra] + 7 ln [(1− r)c] + 7 ln [r(1− a)] + 6 ln [(1− r)(1− c)]

Recall that:

∂ ln f(x)
∂x

=
∂f(x)
∂x

f(x)



lnL = 12 ln [ra] + 7 ln [(1− r)c] + 7 ln [r(1− a)] + 6 ln [(1− r)(1− c)]
∂ lnL
∂a

=
12r
ra

+
7(−r)
r(1− a)

=
12
a
− 7

(1− a)

0 =
12
â
− 7

(1− â)

â =
12
19



lnL = 12 ln [ra] + 7 ln [(1− r)c] + 7 ln [r(1− a)] + 6 ln [(1− r)(1− c)]
∂ lnL
∂c

=
7(1− r)
(1− r)c

+
6− (1− r)

(1− r)(1− a)

=
7
c
− 6

(1− c)

0 =
7
ĉ
− 6

(1− ĉ)

ĉ =
7
13



lnL = 12 ln [ra] + 7 ln [(1− r)c] + 7 ln [r(1− a)] + 6 ln [(1− r)(1− c)]
∂ lnL
∂r

=
12a
ra

+
7(−c)

(1− r)c
+

7(1− a)
r(1− a)

+
6(−(1− c))

(1− r)(1− c)

=
12
r
− 7

(1− r)
+

7
r
− 6

1− r

=
19
r
− 13

(1− r)

0 =
19
r̂
− 13

(1− r̂)

r̂ =
19
32



ML inference displays “scale invariance” so we can just transform the ML
estimates into our original parameters:

π̂A = r̂â =
(

19
32

)(
12
19

)
=

12
32

π̂G = r̂(1− â) =
(

19
32

)(
7
19

)
=

7
32

π̂C = (1− r̂)ĉ =
(

13
32

)(
6
13

)
=

7
32

π̂T = (1− r̂)(1− ĉ) =
(

13
32

)(
6
13

)
=

6
32



Likelihood ratio testing

lnLJC = −44.361

lnLF81 = −43.091

But the F81 model has 3 more free parameters than JC.

The likelihood ratio test is a hypothesis testing approach to

model selection.



Likelihood ratio testing

H0: the data were generated under the simpler model

HA: the data were generated under the more complex model.

test statistic: 2
(
lnLcomplex − lnLsimple

)
The LRT only works if the simple model is nested inside the

more complex model (if the free parameters for the simple

model are a subset of the free parameters for the more complex

model).



Likelihood ratio testing

Null distribution: χ2 distribution with

d.f. = difference in the number of free parameters.

If the LR test statistic is > than the critical value from the

appropriate chi-square table, then we reject the simple model

and prefer the more complex model.



Likelihood ratio testing - example

lnLJC = −44.361

lnLF81 = −43.091

LRT = 2(−43.091− (−44.361)) = 2.54

df = 3− 0 = 3

χ2
3(critical, P = 0.05) = 7.815

Not significant. Do not reject the JC model.

(if we look up the P -value for this test statistic it is 0.4681).



Likelihoods on the simplest possible tree

GA→GG

L = L1L2

= Pr(G) Pr(G→ G) Pr(A) Pr(A→ G)

= Pr(G) Pr(G→ G|ν) Pr(A) Pr(A→ G|ν)

=
(

1
4

)(
1
4

+
3
4
e
−4ν
3

)(
1
4

)(
1
4
− 1

4
e
−4ν
3

)



d =
1
4
− 1

4
e
−4ν
3(

1
4

+
3
4
e
−4ν
3

)
= 1− 3d

L =
(

1
4

)(
1
4

+
3
4
e
−4ν
3

)(
1
4

)(
1
4
− 1

4
e
−4ν
3

)
=

(1− 3d)d
16

∂ lnL
∂d

=
1− 6d

16

0 =
1− 6d̂

16

d̂ =
1
6

ν̂ = 0.82396

L = 0.005208



You may recall that the JC distance correction from lecture 8

looked like this:

ν =
−3
4

ln
(

1− 4p
3

)
If you put in p = 0.5, because half the sites differ in our

example then you the same branch length:

ν = 0.82396

Our JC distance correction formula is actually an ML estimator

of the branch length between a pair of taxa.



The first 30 nucleotides of the ψη-globin gene

gorilla GAAGTCCTTGAGAAATAAACTGCACACTGG
orangutan GGACTCCTTGAGAAATAAACTGCACACTGG

L =
[(

1
4

)(
1
4

+
3
4
e
−4ν
3

)]28 [(1
4

)(
1
4
− 1

4
e
−4ν
3

)]2

0.00 0.05 0.10 0.15 0.20 0.25

54

53

52

51

50

ν̂ = 0.06982
lnL = −51.13396



Copyright © 2007 Paul O. Lewis 9

A

A

A T

C

C

Likelihood of a tree
(data for only one site shown)

Arbitrarily 
chosen to serve 
as the root node

Ancestral states like 
this are not really 
known - we will 
address this in a 

minute.
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3 51 2 44 /3 4 /34 /3 4 /3 4 /33 3 31 1 1 1 1 1 1 1
4 4 4 4 4 4 4 4 4 4 4kL e e e e eν νν ν ν− −− − −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

A

A

A T

C

C
ν2

ν1

ν3

ν4

ν5 ν5 is the expected no. 
substitutions for just this
segment of the tree

Likelihood for site k

PAA(ν1) PAA(ν2) PAC(ν3)

πA

PCT(ν4) PCC(ν5)
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Brute force approach would be to calculate Lk for
all 16 combinations of ancestral states and sum
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Pruning algorithm* 
(same result, much less time)

Many calculations can be done just once,
and then reused many times

*The pruning algorithm was introduced by: Felsenstein, J. 1981. Evolutionary trees from DNA sequences:  
a maximum likelihood approach. Journal of Molecular Evolution 17:368-376



b

b

ν6

b 1
ν1

b 2
ν2

b

ν8

b 3
ν3

b

ν7

b 4
ν4

b 5
ν5

1

Taxon Character

1 A

2 C

3 C

4 C

5 G



L =
∑
x

∑
y

∑
z

∑
w

Pr(x, y, z, w,A,C,C,C,G|ν)

b b x

b y
ν6

b A
ν1

b C
ν2

b z
ν8

b C
ν3

b w
ν7

b C
ν4

b G
ν5

1



L =
∑
x

∑
y

∑
z

∑
w

Pr(x) Pr(y|x, ν6) Pr(A|y, ν1) Pr(C|y, ν2) · · ·

Pr(z|x, ν8) Pr(C|z, ν3) Pr(w|z, ν7) Pr(C|w, ν4) Pr(G|w, ν5)

b b x

b y
ν6

b A
ν1

b C
ν2

b z
ν8

b C
ν3

b w
ν7

b C
ν4

b G
ν5

1



L =
∑
x

∑
y

∑
z

Pr(x) Pr(y|x, ν6) Pr(A|y, ν1) Pr(C|y, ν2) · · ·

Pr(z|x, ν8) Pr(C|z, ν3)
(∑

w

Pr(w|z, ν7) Pr(C|w, ν4) Pr(G|w, ν5)
)

b b x

b y
ν6

b A
ν1

b C
ν2

b z
ν8

b C
ν3

b w
ν7

b C
ν4

b G
ν5

1



L =
∑
x

∑
y

Pr(x) Pr(y|x, ν6) Pr(A|y, ν1) Pr(C|y, ν2) · · ·(∑
z

Pr(z|x, ν8) Pr(C|z, ν3)
(∑

w

Pr(w|z, ν7) Pr(C|w, ν4) Pr(G|w, ν5)
))

b b x

b y
ν6

b A
ν1

b C
ν2

b z
ν8

b C
ν3

b w
ν7

b C
ν4

b G
ν5

1



L =
∑
x

Pr(x)
(∑

y

Pr(y|x, ν6) Pr(A|y, ν1) Pr(C|y, ν2)
)
· · ·

(∑
z

Pr(z|x, ν8) Pr(C|z, ν3)
(∑

w

Pr(w|z, ν7) Pr(C|w, ν4) Pr(G|w, ν5)
))

b b x

b y
ν6

b A
ν1

b C
ν2

b z
ν8

b C
ν3

b w
ν7

b C
ν4

b G
ν5

1
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Maximum likelihood is a lot of work
• Site likelihoods involve products of transition 

probabilities, summed over ancestral states
• Overall log-likelihood for a tree is sum of site log-

likelihoods
• Overall log-likelihood must be maximized!

– must find MLEs for all edge lengths and all model parameters
– this involves computing the overall log-likelihood many, many 

times (try turning on logiter in PAUP to get a feel for how much 
work this involves)

• Maximized lnL can now be compared to 
maximized lnL from other trees
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Is it worth it?
• Uses all information

– Parsimony ignores constant and autapomorphic sites
– Distance methods ignore information not captured in pairwise

comparisons

• Model generality
– Some models possible with distance methods, but some quantities

cannot be estimated reliably (e.g. variation in rates across sites)
– Many parsimony variants exist, but parsimony does not allow 

estimation of the step matrix entries, for example
– Many complex models are only possible under likelihood or 

Bayesian methods (which have a likelihood foundation)
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