
Some of these slides have been borrowed from Dr.
Paul Lewis, Dr. Joe Felsenstein. Thanks!

Paul has many great tools for teaching phylogenetics at his

web site:

http://hydrodictyon.eeb.uconn.edu/people/plewis

http://hydrodictyon.eeb.uconn.edu/people/plewis
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A matter of confidence

0

10

0

1 1

1 1long branches give 
more weight to 

convergence 
explanation

short branches give more 
weight to inheritance 

explanation

less confident
anc. state was 1

more confident
anc. state was 1



Copyright © 2007 by Paul O. Lewis

0 0 1 1 data from one character

ancestral state of interest

state here not of direct interest

Maximum likelihood ancestral state estimation
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"Mk" models
"Cavender-Farris" model:

2 possible states (k = 2)
expected no. changes = μ t
Pii(t) = 0.5 + 0.5 e-2μ t

Pij(t) = 0.5 - 0.5 e-2μ t

Jukes, T. H., and C. R. Cantor. 1969. Evolution of 
protein molecules. Pages 21-132 in Mammalian 
Protein Metabolism (H. N. Munro, ed.) Academic 
Press, New York.

Haldane, J. B. S. 1919. The combination of linkage
values and the calculation of distances between the loci 
of linked factors. Journal of Genetics 8:299-309.

Cavender, J. A. 1978. Taxonomy with confidence. 
Mathematical Biosciences 40:271-280.

Farris, J. S. 1973. A probability model for inferring
evolutionary trees. Systematic Zoology 22:250-256.

Felsenstein, J. 1981. A likelihood approach to character
weighting and what it tells us about parsimony and 
compatibility. Biological Journal of the Linnean Society 
16:183-196.

Jukes-Cantor (1969) model:
4 possible states (k = 4)
expected no. changes = 3 μ t
Pii(t) = 0.25 + 0.75 e-4μ t

Pij(t) = 0.25 - 0.25 e-4μ t
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For branch of length 0.1

μ t = 0.1
P00(0.1) = 0.5 + 0.5 e-2(0.1) = 0.90936
P01(0.1) = 0.5 - 0.5 e-2(0.1) = 0. 09064
P10(0.1) = 0.5 - 0.5 e-2(0.1) = 0. 09064
P11(0.1) = 0.5 + 0.5 e-2(0.1) = 0.90936
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For branch of length 0.2

μ t = 0.2
P00(0.2) = 0.5 + 0.5 e-2(0.2) = 0.83516
P01(0.2) = 0.5 - 0.5 e-2(0.2) = 0. 16484
P10(0.2) = 0.5 - 0.5 e-2(0.2) = 0. 16484
P11(0.2) = 0.5 + 0.5 e-2(0.2) = 0. 83516
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0 0 1 1
Calculating conditional likelihoods

at upper node

?

0.2
0.2

0.1

0.1 0.1
L0 = P01(.1) P01(.1)

= [.09064]2 = 0.00822

L1 = P11(.1) P11(.1)
= [0.90936]2 = 0.82694

L0 and L1 are known as conditional likelihoods. 
L0, for example, is the likelihood of the subtree
given that the node has state 0.

L0 = Pr(data above node | node state = 0)
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0 0 1 1

0

0.2
0.2

0.1

0.1 0.1

L0 = 0.00822 L1 = 0.82694

L0 = P00(.2) P00(.2) P00(.1) L0
+ P00(.2) P00(.2) P01(.1) L1

= (.83516)2 (.90936) (.00822)
+ (.83516)2 (.09064) (.82694)

= 0.05749

Calculating likelihood at basal node
conditional on
basal node having
state 0
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0 0 1 1
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= [.09064]2 = 0.00822
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L0, for example, is the likelihood of the subtree
given that the node has state 0.

L0 = Pr(data above node | node state = 0)
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0 0 1 1
Calculating likelihood of the tree

using conditional
likelihoods at the
basal node

0.2
0.2

0.1

0.1 0.1

L0 = 0.05749   L1 = 0.02045

L = Pr(0) Pr(D|0) + Pr(1) Pr(D|1)
= (0.5) L0 + (0.5) L1
= (0.5) (0.05749) + (0.5) (0.02045)
= (0.5)(0.07794) = 0.03897

lnL = -3.24496

D here refers to the observed data at the tips

0 here refers to the state at the basal node
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0 0 1 1
Choosing the maximum likelihood ancestral

state is simply a
matter of seeing
which conditional
likelihood is the
largest0.2

0.2

0.1

0.1 0.1

L0 = 0.05749   L1 = 0.02045
(73.8%) (26.2%)

In this case, L0 is larger of the two
so, if forced to decide, you would 
go with 0 as the ancestral state.
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L0 = 0.05749       L1 = 0.02045
(73.8%) (26.2%)

0.738  = 
(0.5) (0.05749)

(0.5) (0.05749) + (0.5) (0.02045)

prior likelihood

marginal probability of the data
posterior
probability
of state 0 Converting likelihoods to percentages produces

Bayesian posterior probabilities (and implicitly
assumes a flat prior over ancestral states)

Is this a ML or Bayesian approach?

Yang, Z., S. Kumar, and M. Nei. 1995. A new method of inference of ancestral nucleotide and amino-acid sequences. 
Genetics 141:1641-1650.
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Empirical Bayes vs. Full Bayes
The likelihood used in the previous slide is the maximum
likelihood, i.e. the likelihood at one particular combination
of branch length values (and values of other model parameters).

A fully Bayesian approach would approximate the posterior
probability associated with state 0 and state 1 at the node of
interest using an MCMC analysis that allowed all the model
parameters to vary, including the branch lengths.

Because some parameters are fixed at their maximum
likelihood estimates, this approach is often called an 
empirical Bayesian method.
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Marginal vs. Joint Estimation

• marginal estimation involves summing 
likelihood over all states at all nodes except 
one of interest (most common)

• joint estimation involves finding the 
combination of states at all nodes that 
together account for the highest likelihood 
(seldom used)
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0 0 1 1 Joint
Estimation

0.2
0.2

0.1

0.1 0.1

0

0

L00 = 0.5 P00(.2) P00(.2) P00(.1) P01(.1) P01(.1)
= (0.5) (.83516)2 (.90936) (.09064)2

= 0.00261

Find likelihood of this
particular combination of 
ancestral states (call it L00)
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0 0 1 1 Joint
Estimation

0.2
0.2

0.1

0.1 0.1

0

1

L01 = 0.5 P00(.2) P00(.2) P01(.1) P11(.1) P11(.1)
= (0.5) (.83516)2 (.09064) (.90936)2

= 0.02614

Now we are calculating the
likelihood of a different 
combination of ancestral
states (call this one L01)
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0 0 1 1 Joint
Estimation

0.2
0.2

0.1

0.1 0.1

L00 = 0.00261
L01 = 0.02614
L10 = 0.00003
L11 = 0.01022

X

Y
best

Summary of the four possibilities:

X Y
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0 0 1 1

0.2
0.2

0.1

0.1 0.1

What about a pie diagram for
this node?

Returning to marginal estimation...

L0 = 0.00822 L1 = 0.82694

Previously, we computed
these conditional likelihoods
for this node:

Can we just make a pie diagram from
these two values? 
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0 0 1 1

0.2
0.2

0.1

0.1 0.1

Returning to marginal estimation...

The conditional likelihoods we
computed only included data
above this node (i.e. only half 
the observed states)



Estimation of where changes take place

1. What is the probability that a change 0 → 1 took place on

a particular branch in the tree?

2. What is the probability that the character changed state

exactly x times on the tree ?

Should we answer these questions with a joint or marginal

ancestral character state reconstruction?



No



We should figure out the probability of explaining the character

state distribution with exactly the set of changes we are

interested in.

Marginalize over all states that are not crucial to the question



1. What is the probability that a change 0 → 1 took place on

a particular branch in the tree? – fix the ancestral node to 0

and the descendant to 1, calculate the likelihood and divide

that by the total likelihood.

2. What is the probability that the character changed state

exactly x times on the tree ?



1. What is the probability that a change 0 → 1 took place on

a particular branch in the tree?

2. What is the probability that the character changed state

exactly x times on the tree ? – Sum the likelihoods over all

reconstructions that have exactly x changes. This is not easy

to do! Recall that Pr(0→ 1|ν, θ) from our models accounts

for multiple hits. A solution is to sample histories according

to their posterior probabilities and summarize these samples.
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Ancestral states are one thing...
But wouldn't it be nice
to estimate not only
what happened at the
nodes, but also what
happened along the 
edges of the tree?
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Stochastic mapping
simulates an entire
character history
consistent with the
observed character
data.

In this case, green
means perennial and
blue means annual
in the flowering
plant genus
Polygonella
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Three Mappings for Lifespan

Blue = annual
Green = perennial

Each simulation produces a different
history (or mapping) consistent with the
observed states.
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Kinds of questions you can 
answer using stochastic mapping

• How long, on average, does a character 
spend in state 0? In state 1?

• Is the total time in which two characters are 
both in state 1 more than would be expected 
if they were evolving independently?

• What is the number of switches from state 0 
to state 1 for a character (on average)?
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Step 1: Downpass to obtain conditional likelihoods

This part reflects
the calculations
needed to estimate
ancestral states.
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Step 2: Up-pass to sample states at the interior nodes

Likelihood
Posterior 

probability Prior probability

This part resembles a 
standard simulation, with
the exception that we
must conform to the
observed states at the tips
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Choosing a state at an interior node

Posterior probability of state 2

Posterior probability of state 0 Posterior probability of state 1

Once the posterior
probabilities have
been calculated for
all three states, a
virtual "Roulette 
wheel" or "pie"
can be constructed
and used to choose
a state at random.

In this case, the 
posterior distri-
bution was:
{0.1, 0.2, 0.7}
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Sampling state at node 6

Have already chosen
state at the root node

Note: only the calculation for x6=0 is presented (but
you must do a similar calculation for all three states)
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Sampling state at node 5

Note: only the calculation for x5=0 is presented
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"Mapping" edges
• Mapping an edge means choosing an 

evolutionary history for a character along a 
particular edge that is consistent with the 
observed states at the tips, the chosen states at 
the interior nodes, and the model of character 
change being assumed

• This is done by choosing random sojourn times
and "causing" a change in state at the end of each 
of these sojourns

• What is a sojourn time? It is the time between 
substitution events, or the time one has to wait 
until the next change of character state occurs
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0
1st. sojourn time 2nd. sojourn time 3rd.

sojourn
time

20→1 1→0 0→2

4th. sojourn time

Last sojourn time 
takes us beyond 
the end of the 

branch, so 2 is the 
final state

Sojourn times are related to substitution rates. High substitution
rates mean short sojourn times, on average. A dwell time is the total 

amount of time spent in one particular state. For example, the
dwell time associated with state 0 is the sum of the 1st. and

3rd. sojourn times.

1st. waiting time
2nd. waiting time

3rd. waiting time
4th. waiting time
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Substitution rates and sojourn times

-2 βββ2

β-2 ββ1

ββ-2 β0

210

Symmetric model for character 
with 3 states: 0, 1 and 2 The rate at which state 0

changes to something
else (either state 1 or 
state 2) is 2β

Note that 2βt equals the
branch length. For these
symmetric models, the 
branch length is (k-1)βt
where k is the number
of states.



Sojourn times are exponentially distributed

If λ is the total rate of leaving state 0, then you can simulate

a soujourn by:

• drawing a time according to the cumulative distribution

function of the exponential distribution (1− e−λt).

• pick the “destination” state by normalizing the rates away

from state 0 such that the rates sum to one.

This is picking j and t by:

Pr(0→ j, t) = Pr(mut. at t) Pr(j|mut.)

But we want quantities like:

Pr(0→ j, t|0→ 2, ν1)



Conditioning on the data

We simulate according to Pr(0 → j, t|0 → 2, ν1) by rejection

sampling:

1. Simulate a series of draws of the form: Pr(0 → j, t) until

the sum of t exceeds ν1,

2. If we ended up in the correct state, then accept this series

of sojourns as the mapping.

3. If not, go back to step 1.
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"Mapping" edge 1



© 2007 by Paul O. Lewis 21

Failed mapping



© 2007 by Paul O. Lewis 22

Completed mapping



“Stochastic character mapping” or “Mutational
Mapping”

• allows you to sample from the posterior distribution of

histories for characters

• conditional on an assumed model

• conditional on the observed data

• implemented in Simmap (v1 by J. Bollback; v2 by J. Bollback

and J. Yu) and Mesquite (module by P. Midford)



“Stochastic character mapping”

You can calculate summary statistics on the set of simulated

histories to answer almost any type of question that depends on

knowing ancestral character states or the number of changes:

• What proportion of the evolutionary history was ‘spent’ in

state 0?

• What is the posterior probability that there were between 2

and 4 changes of state?

• Does the state in one character appear to affect the

probability of change at another? – Map both characters

and do a contingency analysis.

See Minin and Suchard (2008a,b); O’Brein et al. (2009) for

rejection free approaches to generate mappings.



Often we are more interested in the “forces” driving evolutionary

patterns than the outcome.

Perhaps we should focus on fitting a model of character

evolution rather than the ancestral character state estimates.



Rather than this:

1. estimate a tree,

2. estimate character states,

3. figure out what model of character evolution best fits those

ancestral character state reconstructions.

We could do this:

1. estimate a tree,

2. figure out what model of character evolution best fits tip

data

Or even this:

1. Jointly estimate character evolution in trees in MCMC

(marginalizing over trees when answering questions about

character evolution).



Correlation of states in a discrete-state model

#2

#1

#2

#1

species states branch changes

change in
character 2

change in
character 1

0 6

4 0

Y N

Y

N

1 0

0 18

character 1:

character 2:

Week 8: Paired sites tests, gene frequencies, continuous characters – p.35/44
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Example from pp. 429-430 of 
the MacClade 4 manual.

Character 2

Character 1

Q: Does character 2 tend to change
from yellow →blue only when 
character 1 is in the blue state?
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Concentrated Changes Test

More precisely: how often would three yellow→blue changes occur in the 
blue areas of the cladogram on the left if these 3 changes were thrown 
down at random on branches of the tree?

Answer: 12.0671% of the time. Thus, we cannot reject the null hypothesis 
that the observed coincident changes in the two characters were simply
the result of chance.



Model-based approach to detecting correlated evolution

View the problem as model-selection or use LRT if you prefer

the hypothesis testing framework.

Consider two binary characters. Under the simplest model,

there is only one rate:

0 1 2 3

(0,0) (0,1) (1,0) (1,1)

0 (0,0) - q q 0

1 (0,1) q - 0 q

2 (1,0) q 0 - q

3 (1,1) 0 q q -

Why are there 0’s?



Under a model assuming character independence:

0 1 2 3
(0,0) (0,1) (1,0) (1,1)

0 (0,0) - q∗1 q1∗ 0
1 (0,1) q∗0 - 0 q1∗
2 (1,0) q0∗ 0 - q∗1
3 (1,1) 0 q0∗ q∗0 -

Under a the most general model (letter indicates the character changing,
subscripts=start state):

0 1 2 3
(0,0) (0,1) (1,0) (1,1)

0 (0,0) - s00 f00 0
1 (0,1) s01 - 0 f01
2 (1,0) f10 0 - s10
3 (1,1) 0 f11 s11 -
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f10 f00 f11 f01



We can calculate maximum likelihood scores under any of these models and
do model selection.

Or we could put priors on the parameter values and using Bayesian model
selection (e.g. reversible jump methods in BayesTraits).
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