Some of these slides have been borrowed from Dr. Paul Lewis, Dr. Joe Felsenstein. Thanks!

Paul has many great tools for teaching phylogenetics at his web site:

http://hydrodictyon.eeb.uconn.edu/people/plewis
Key Innovations
Clade contrast approach

Left-hand lineage has few species

There is obviously a difference in diversity here, but is this difference so large that it cannot be explained using a model of random speciation?

Right-hand lineage has many species, and is associated with some trait thought to favor species diversity

\[\Pr(1, 1) = 1.0 \]
\[\Pr(1, 2) = 0.5 \]
\[\Pr(2, 1) = 0.5 \]
\[\Pr(1, 2) = 1 \]
\[
\Pr(1, 3) = \frac{1}{3}
\]

\[
\Pr(2, 2) = \frac{1}{3}
\]
\[
\Pr(1, 3) + \Pr(3, 1) = \frac{2}{3}
\]

\[
\Pr(2, 2) = \frac{1}{3}
\]
\[\Pr(1, 4) + \Pr(4, 1) = \frac{1}{2} \]

\[\Pr(2, 3) + \Pr(3, 2) = \frac{1}{2} \]
\[\Pr(1, 5) + \Pr(5, 1) = \frac{2}{5} \]

\[\Pr(2, 4) + \Pr(4, 2) = \frac{2}{5} \]

\[\Pr(3, 3) = \frac{1}{5} \]
\[
Pr(1, 6) + Pr(6, 1) = \frac{1}{3} \\
Pr(2, 5) + Pr(5, 2) = \frac{1}{3} \\
Pr(3, 4) + Pr(4, 3) = \frac{1}{3}
\]
\[\Pr(1, 7) + \Pr(7, 1) = \frac{2}{7} \]

\[\Pr(2, 6) + \Pr(6, 2) = \frac{2}{7} \]

\[\Pr(3, 5) + \Pr(5, 3) = \frac{2}{7} \]

\[\Pr(4, 4) = \frac{1}{7} \]
\[\Pr(1, 8) + \Pr(8, 1) = \frac{1}{4} \]

\[\Pr(2, 7) + \Pr(7, 2) = \frac{1}{4} \]

\[\Pr(3, 6) + \Pr(6, 3) = \frac{1}{4} \]

\[\Pr(4, 5) + \Pr(5, 4) = \frac{1}{4} \]
Key Innovations – clade size comparison

If you have an *a priori* reason to expect one state to lead to more species, then you can conduct the test as a one-tailed test.

This (roughly) divides the probabilities by one half.

\[
\Pr(x, y) = \frac{1}{x + y - 1}
\]

You have the pair of sister clades have a total of 46 species; 43 are in one clade and three are in another. What is the probability of seeing this much imbalance in clade size even if the character does not affect clade size?
Clade contrast approach

Observed:
\[Pr(3,43) = \frac{1}{3+43-1} = \frac{1}{45} \]

More extreme:
\[Pr(2,44) = \frac{1}{45} \]
\[Pr(1,45) = \frac{1}{45} \]

Probability of a contrast at least this extreme is \[\frac{3}{45} = 0.067 \text{ (n.s.)} \]

Problem: test has low power (i.e. contrast needs to be quite extreme before this test can detect it). Also, assumes no reversals.
Ree's approach

Shorter average times between speciation events are associated with state 1 → **evidence** that state 1 is a key innovation

No association of internode times with state 1 → **no evidence** that state 1 is a key innovation

Fig. 1 from: Ree, R. H. 2005. Evolution 59(2): 257-265.
Ree's approach

• Question: is diversification rate elevated when state 1 is present in a lineage

• Answer involves three parts:
 – Decide when state 1 is present and when it is absent
 – Measure average diversification rate for both cases and form a contrast
 – Decide whether the contrast is significantly large based on null-model expectation
Part 1: When is state 1 present and when is it absent?

Use stochastic character mapping to determine this: the figure shows four mappings in which bold lines represent portions of lineages in which character state 1 was in effect.

If state 1 is indeed a key innovation, then expect a higher rate of diversification in the bold segments of the tree.
Part 2: Measuring diversification rates

White state: 7 "speciations" over 70% of tree
Black state: 4 "speciations" over 30% of tree

\[d_0 = \frac{7}{0.7} = 10.00 \]
\[d_1 = \frac{4}{0.3} = 13.33 \]
\[d_1 - d_0 = 3.33 \leftarrow \text{is this a large number?} \]
Part 3: Null model is the Yule process

At every point in time, all lineages in existence have the same probability of speciating (no extinction allowed)

This same process was used by Slowinski and Guyer to obtain their clade contrast probabilities...

...but the Yule model also says something about the timings between speciations
Part 3: Yule process

- $t_5 \sim \exp(5d)$
- $t_4 \sim \exp(4d)$
- $t_3 \sim \exp(3d)$
- $t_2 \sim \exp(2d)$
- $t_1 \sim \exp(d)$

Rate of speciation increases linearly with the number of lineages.

Times between speciation events become shorter and shorter on average.
Part 3: Yule model null

- These stochastic mappings are on Yule trees
- Calculate contrasts $d_1 - d_0$ for these mappings just as you did for the stochastic mappings on the estimated trees
- Build up distribution of $d_1 - d_0$ contrasts from Yule trees to determine cutoff for statistical significance
- If original diversification rate contrast is in the upper 5% tail of this null distribution, then random speciation model cannot explain why diversification rate is higher when state 1 is present
Are columbine spurs a key adaptation?

Nectar-filled spurs are an adaptation to hummingbird pollination. Non-spurred species are hawkmoth pollinated.
Columbine example

• Used relaxed clock method in Beast program to sample trees with branch lengths proportional to divergence times

• Slowinski & Guyer clade contrast method yields $Pr(1,15) = 1/15 = 0.067$ (note that homoplasy is a complication)

• Ree's approach yielded P-value = 0.0006 (appears to be much more powerful and homoplasy is not a complicating factor)
Potential weakness of Ree’s approach

• When testing for character correlations, stochastic character mapping can be weaker than Pagel’s method because the model used to infer the mapping assumes independence.
• In Ree’s approach the stochastic character mapping is done using a model that assumes that state changes are independent of the probability of cladogenesis.
• A potentially more powerful approach is to use a model that allows speciation and extinction rates to vary depending on a character state.
• As is often the case: being less powerful may make Ree’s approach more robust!
Calculate the probability of tree shape and character distribution:

\[\Pr(X, T, \nu | \theta) \]

rather than:

\[\Pr(X, |T, \nu, \theta) \]

which is done by assuming that the evolution of a character is independent of tree shape.
BiSSE model of Maddison et al. (2007)

μ_0 the extinction rate of a species that displays character state 0
μ_1 the extinction rate of a species that displays character state 1
λ_0 the speciation rate of a species that displays character state 0
λ_1 the speciation rate of a species that displays character state 1
q_{01} the rate of $0 \rightarrow 1$ transitions.
q_{10} the rate of $1 \rightarrow 0$ transitions.
BiSSE model of Maddison et al. (2007)

Sweep tip-to-root. $D_{N0}(t + \Delta t)$ is the probability of an species with character state 0 at time $t + \Delta t$ being the ancestor of a particular clade of N taxa at time 0.

$D_{N0}(t + \Delta t)$ is $(1 - \mu_0 \Delta t)$ times the sum of:

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr(No changes in Δt)</td>
<td>$(1 - q_{01} \Delta t)(1 - \lambda_0 \Delta t)D_{N0}(t)$</td>
</tr>
<tr>
<td>Pr(state change in Δt)</td>
<td>$(q_{01} \Delta t)(1 - \lambda_0 \Delta t)D_{N1}(t)$</td>
</tr>
<tr>
<td>Pr(Spec. + extinct. in Δt)</td>
<td>$(1 - q_{01} \Delta t)(\lambda_0 \Delta t)E_0(t)D_{N0}(t)$</td>
</tr>
<tr>
<td>Pr(Spec. + extinct. in Δt)</td>
<td>$(1 - q_{01} \Delta t)(\lambda_0 \Delta t)E_0(t)D_{N0}(t)$</td>
</tr>
</tbody>
</table>
BiSSE model of Maddison et al. (2007)

$E_0(t + \Delta t)$ is the probability of an species with character state 0 at time $t + \Delta t$ giving rise to no descendants at time 0. $E_0(t + \Delta t)$ is the sum of:

<table>
<thead>
<tr>
<th>Event</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extinction in Δt</td>
<td>$\mu_0 \Delta t$</td>
</tr>
<tr>
<td>No changes in Δt</td>
<td>$(1 - \mu_0 \Delta t)(1 - q_{01} \Delta t)(1 - \lambda_0 \Delta t)E_0(t)$</td>
</tr>
<tr>
<td>State change in Δt</td>
<td>$(1 - \mu_0 \Delta t)(q_{01} \Delta t)(1 - \lambda_0 \Delta t)E_1(t)$</td>
</tr>
<tr>
<td>Spec. in Δt</td>
<td>$(1 - \mu_0 \Delta t)(1 - q_{01} \Delta t)(\lambda_0 \Delta t)E_0(t)^2$</td>
</tr>
</tbody>
</table>
BiSSE model of Maddison et al. (2007)

Initial conditions:

\[A D_{10}(0) = 1 \] term for every tip that has state 0
\[A D_{11}(0) = 1 \] term for every tip that has state 1
\[E_0(0) = E_1(0) = 0 \]

You can use likelihood ratios to test if \(\lambda_0 = \lambda_1 \) and \(\mu_0 = \mu_1 \).

Implemented (by Peter Midford) in Mesquite.
Continuous characters
Fig. 6.—A typical data set that might be generated for the phylogeny in fig. 5 using the model of independent Brownian motion (normal increments) in each character.
Fig. 7—The same data set, with the points distinguished to show the members of the 2 monophyletic taxa. It can immediately be seen that the apparently significant relationship of fig. 6 is illusory.
Fig. 5.—A “worst case” phylogeny for 40 species, in which there prove to be 2 groups each of 20 close relatives.
An outcome of Brownian motion on a 5-species tree
An outcome of Brownian motion on a 5-species tree
An outcome of Brownian motion on a 5-species tree
An outcome of Brownian motion on a 5-species tree
Likelihood under Brownian motion with two species

\[f(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right) \]

\[L = \prod_{i=1}^{p} \frac{1}{(2\pi)\sigma_i^2 \sqrt{v_1v_2}} \exp \left(-\frac{1}{2\sigma_i^2} \left[\frac{(x_{1i} - x_{0i})^2}{v_1} + \frac{(x_{2i} - x_{0i})^2}{v_2} \right] \right) \]
Data for Two Characters, X and Y

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>27</td>
<td>122</td>
</tr>
<tr>
<td>B</td>
<td>33</td>
<td>124</td>
</tr>
<tr>
<td>C</td>
<td>18</td>
<td>126</td>
</tr>
<tr>
<td>D</td>
<td>22</td>
<td>128</td>
</tr>
</tbody>
</table>

Var(X) = 42.000
Var(Y) = 6.667
Cov(XY) = -10.000
Correlation = -0.5976

The negative correlation is fairly strong, but would it weaken if it were recognized that there are not really 4 independent data points here...
Model predicts that the uncertainty associated with the difference in trait values (i.e. \(D_{ij} = X_i - X_j \)) grows linearly with time. That is,

\[
\text{Var}(D_{ij}) = (t_i + t_j) \sigma^2
\]

So the longer you wait, the less you can predict about \(D_{ij} \).
Brownian Motion Model

\[X_k = \frac{X_i/t_i + X_j/t_j}{1/t_i + 1/t_j} \]

Ancestral trait value estimated to be weighted average of descendants' values. Weights are inverses of branch lengths (i.e. times)
Brownian Motion Model

X_i X_j

t_i t_j

X_k

X_k is not observed, and thus has some extra uncertainty associated with its value. This extra uncertainty can be modeled by adding an extra bit of length (t_k') to the branch subtending X_k

$t_k + t_k'$

The amount of extra uncertainty that should be added is:

$$t_k' = \frac{t_i \cdot t_j}{(t_i + t_j)}$$
Data for Two Characters on Tree

X 27
Y 122

A

B

C

D

E

F

A B C D

E F

© 2007 by Paul O. Lewis
Contrasts (left minus right)

X: 27 -6 33
 18 -4 22

Y: 122 -2 124
 126 -2 128

2 2 2 2

30 10 20
123 -4 127

3.5 3.5 3.5 3.5
Scaling Contrasts

- A-B and C-D contrasts are expected to be on the same scale because the path length associated with both of these is 4
- E-F has a path length of 7, which means this contrast is expected to be larger
- Adding in the extra uncertainty associated with estimating E and F, this path length expands from 7 to 9
- Can put all 3 contrasts on same scale by dividing by standard deviation (square root of variance)
Rescaled Contrasts

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Variance proportional to</th>
<th>X*</th>
<th>Y*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>-6</td>
<td>-2</td>
<td>4</td>
<td>-6/2 = -3</td>
<td>-2/2 = -1</td>
</tr>
<tr>
<td>C-D</td>
<td>-4</td>
<td>-2</td>
<td>4</td>
<td>-4/2 = -2</td>
<td>-2/2 = -1</td>
</tr>
<tr>
<td>E-F</td>
<td>10</td>
<td>-4</td>
<td>9</td>
<td>10/3 = 3.33</td>
<td>-4/3 = -1.33</td>
</tr>
</tbody>
</table>

Asterisks indicate that these original trait values have been scaled by dividing by the square root of the path length.

These path lengths are proportional to the variance, and thus they are all that are needed to place the 3 contrasts for a given trait on the same scale.
Correlation of Contrasts

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-B</td>
<td>-3</td>
<td>-1</td>
</tr>
<tr>
<td>C-D</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>E-F</td>
<td>3.33</td>
<td>-1.33</td>
</tr>
</tbody>
</table>

Correlation of the raw X and Y trait values was -0.5976, which is both stronger and of opposite sign. Note that the sample size is now 3 rather than 4.

The CONTRAST program in Joe Felsenstein's PHYLIP package performs independent contrasts.

\[
\begin{align*}
\text{Var}(X) &= 8.0370 \\
\text{Var}(Y) &= 1.2593 \\
\text{Cov}(XY) &= 0.1852 \\
\text{Correlation} &= 0.05821
\end{align*}
\]
Estimating phylogenies from continuous traits

• Same brownian motion model used for independent contrasts method

• CONTML program in the PHYLIP package: http://evolution.genetics.washington.edu/phylip.html