
Kingman’s coalescent
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u2

Random collision of lineages as go back in time (sans recombination)

Collision is faster the smaller the effective population size

Average time for  n  

Average time for  

copies to coalesce to

4N

k(k−1)
  k−1    =   

In a diploid  population of

effective population size  N,

copies to coalesce

  =   4N (1 −  
1
n (  generations

k  

Average time for

 two copies to coalesce

  =  2N  generations

Week 9: Coalescents – p.17/60



Coalescence is faster in small populations

Change of population size and coalescents

Ne

time

the changes in population size will produce waves of coalescence

time

Coalescence events

time

the tree

The parameters of the growth curve for   Ne  can be inferred by
likelihood methods as they affect the prior probabilities of those trees
that fit the data.

Week 9: Coalescents – p.24/60



“Skyline” and “Skyride” plots in BEAST
Classical Skyline Plot
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Figure from Minin, Bloomquist, and Suchard 2008



BEST Liu and Pearl (2007); Edwards et al. (2007)

• X – sequence data
• G – a genealogy (gene tree – with branch lengths)
• S – a species tree
• θ – demographic parameters
• Λ – parameters of molecular sequence evolution

Pr(S,θ|X) =
Pr(S,θ) Pr(X|S,θ)

Pr(X)

= Pr(S) Pr(θ)
∫

Pr(X|G) Pr(G|S,θ)dG

∝ Pr(S) Pr(θ)
∫ [∫

Pr(X|G,Λ) Pr(Λ)dΛ
]

Pr(G|S,θ)dG



BEST – importance sampling

1. Generate a collection of gene trees, G, using an

approximation of the coalescent prior

2. Sample from the distribution of the species trees conditional

on the gene trees, G.

3. Use “importance weights” to correct the sample for the fact

that an approximate prior was used



BEST – importance sampling

1. Generate a collection of gene trees, G, using an

approximation of the coalescent prior

(a) Use a tweaked version of MrBayes to sample N sets of

gene trees, G, from

†
Pr(G|X) =

Pr†(G) Pr(X|G)
Pr†(X)

(b) Pr†(G) is an approximate prior on gene trees from using

a “maximal” species tree.

2. Sample from the distribution of the species trees conditional

on the gene trees, G.

3. Use “importance weights” to correct the sample for the fact

that an approximate prior was used



BEST – importance sampling

1. Generate a collection of gene trees, G, using an

approximation of the coalescent prior

2. Sample from the distribution of the species trees conditional

on the gene trees, G.

(a) From each set of gene trees (Gj for 1 ≤ j ≤ N) generate

k species trees using coalescent theory:

Pr(Si|Gj) =
Pr(Si) Pr(Gj|Si)

Pr(Gj)

3. Use “importance weights” to correct the sample for the fact

that an approximate prior was used



BEST – importance sampling

1. Generate a collection of gene trees, G, using an approximation of the
coalescent prior

2. Sample from the distribution of the species trees conditional on the gene
trees, G.

3. Use “importance weights” to correct the sample for the fact that an
approximate prior was used
(a) Estimate P̂r(Gj) by using the harmonic mean estimator from the

MCMC in step 2.
(b) Compute a normalization factor

β =
N∑

j=1

P̂r(Gj)
Pr(Gj)

(c) Reweight all sampled species trees by

P̂r(Gj)
Pr(Gj)

β



BEST – conclusions

1. very expensive computationally (long MrBayes runs are

needed)

2. should correctly deal with the variability in gene tree caused

by the coalescent process.



∗BEAST overview

Goal: approximate Pr(S|X)

Pr(S|X) ∝ Pr(X|S) Pr(S)

=
∫

Pr(X|G) Pr(G|S) Pr(S)dG

=
∫ ∫

Pr(X|G) Pr(G|S,θ) Pr(S)dGdθ

=
∫ ∫ ∫

Pr(X|G,Λ) Pr(G|S,θ) Pr(S)dGdθdΛ

θ = {N1, N2, . . . , }
Λ = {κ,π, . . .}



Pr(S) from speciation model

S



Pr(G|S)

S G



Gene tree in a species tree w/ variable population size

Figure modified from Heled and Drummond 2010

A C B

A1 A2 A3 C1 C2 C3 B2 B1 B3

Pr(G|S) =
∏b

i Pr(Gi|Si)G in grey
S in black



In Species A



In Species C



In Species B



In ancestor of AC



In ancestor of ACB



Gene tree in a species tree w/ variable population size

Figure modified from Heled and Drummond 2010

A C B

A1 A2 A3 C1 C2 C3 B2 B1 B3

Pr(G|S) =
∏b

i Pr(Gi|Si)G in grey
S in black



MCMC update to gene tree

→

Changing G affects Pr(X|G,Λ) and Pr(G|S,θ)



Another MCMC update to gene tree

→

Some changes to G are incompatible with S (and will be rejected).



MCMC update to species tree

→

Changing S affects Pr(G|S,θ), but not Pr(X|G,Λ).
Note that the red dots are “flags” for when a lineage enters a new species;
the heights are determined by the species tree.



Another MCMC update to species tree

→

Some changes to S are incompatible with C (and will be rejected).



An MCMC update to the population size

→

Ne ∈ θ, so changing Ne affects Pr(G|S,θ), but not Pr(X|G,Λ).



Multiple gene tree in a species tree w/ variable
population size

Figure from modified Heled and Drummond 2010



∗BEST

Similar model to BEST, but much more efficient

implementation.

Both attempt to sample the posterior distribution of species

trees, gene trees, demographic parameter values and mutational

parameter values.

Both will be very sensitive to migration, but they represent the

state-of-the-art for estimating species trees from gene trees.



Multiple Sequence Alignment - main points

• The goal of MSA is to introduce gaps such that residues in

the same column are homologous (all residues in the column

descended from a residue in their common ancestor).

• The problem is recast as:

– reward matches (+ scores)

– penalize rare substitutions (- scores),

– penalize gaps (- scores),

– try to find an alignment that maximizes the total score

• pairwise alignment is tractable

• MSA is usually done progressively

• progressive alignment algorithms are heuristic, and do not

optimize an evolutionary defensible criterion



Multiple Sequence Alignment tools

• clustal variants are popular, but not very reliable.

• simultaneous inference of MSA and tree is the most defensible

(but computationally demanding)

• Promising tools for MSA (roughly in order of computational

tractability):

1. Simultaneous MSA + Trees (Handel, BAliPhy, BEAST,

AliFritz. . .)

2. FSA (fast statistical alignment); Infernal (for rRNA);

Prank

3. MAFFT, Muscle, ProbCons

• Iterative “meta-solutions” (e.g. SATè ) allow MSA

uncertainty to be incorporated in tree inference.

• GBlocks (and similar tools) cull ambiguously aligned regions.



human KRSV
chimp KRV
orang KPRV



KPSV

KPRV

KRSV

KRVKRSV

S->R

del S

P->R

human                                    chimp                                                     orangutan



human KRSV
chimp KRV
gorilla KSV
orang KPRV

How should we align these sequences?

human KRSV human KRSV
chimp KR-V OR chimp K-RV
gorilla KS-V gorilla K-SV
orang KPRV orang KPRV



Pairwise alignment

Gap penalties and a substitution matrix imply a

score for any alignment. Pairwise alignment involves

finding the alignment that maximizes this score.

• substitution matrices assign positive values to

matches or similar substitutions (for example

Leucine→Isoleucine).

• unlikely substitutions receive negative scores

• gaps are rare and are heavily penalized (given large

negative values).



Scoring an alignment. Simplest case

Costs:

Match 1

Mismatch 0

Gap -5

Alignment:
Pongo V D E V G G E L G R L F V V P T Q
Gorilla V E V A G D L G R L L I V Y P S R

Score 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0

Total score = 5



Scoring an different alignment. Simplest case

Match 1

Mismatch 0

Gap -5

Pongo V D E V G G E L G R L - F V V P T Q
Gorilla V - E V A G D L G R L L I V Y P S R

Score 1 -5 1 1 0 1 0 1 1 1 1 -5 0 1 0 1 0 0

Total score = 0



BLOSUM 62 Substitution matrix

A R N D C Q E G H I L K M F P S T W Y V

A 4
R -1 5

N -2 0 6
D -2 -2 1 6

C 0 -3 -3 -3 9
Q -1 1 0 0 -3 5

E -1 0 0 2 -4 2 5
G 0 -2 0 -1 -3 -2 -2 6

H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

A R N D C Q E G H I L K M F P S T W Y V



Scoring an alignment with the BLOSUM 62 matrix

Pongo V D E V G G E L G R L F V V P T Q
Gorilla V E V A G D L G R L L I V Y P S R

Score 4 2 -2 0 6 -6 -3 -4 -2 -2 4 0 4 -1 7 4 1

The score for the alignment is

Dij =
∑
k

d
(k)
ij

If i indicates Pongo and j indicates Gorilla

Dij = 12



Scoring an alignment with gaps

If the GP is -8:
Pongo V D E V G G E L G R L - F V V P T Q
Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1

By introducing gaps we have improved the score:

Dij = 40



Gap Penalties

Gaps are penalized more heavily than substitutions

to avoid alignments like this:

Pongo VDEVGGE-LGRLFVVPTQ
Gorilla VDEVGG-WLGRLFVVPTQ



Gap Penalties

Because multiple residues are often inserted or

deleted at the same time, affine gap penalties are

often used:

GP = GO + lGE

where:

• GP is the gap penalty.

• GO is the “gap-opening penalty”

• GE is the “gap-extension penalty”

• l is the length of the gap



Finding an optimal alignment

V
E
V
A
G
D
L
G
R
L
L
I

Y
P
S
R

V

V ED E V G G L G VR L F V P T Q
Pongo

Gorilla



Aligning two sequences, each with length = 1

D
• → •

E ↓ ↘ ↓
• → •



Alignment 1

D
• → • D-

E ↓ ↘ ↓ -E
• → •



Alignment 2

D
• → • D

E ↓ ↘ ↓ E
• → •



Alignment 3

D
• → • -D

E ↓ ↘ ↓ E-
• → •



Longer sequences – up to 2 amino acids!

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓
• → • → •

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 1

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ VD--
• → • → • --VE

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 2

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ VD-
• → • → • -VE

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 3

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ V-D-
• → • → • -V-E

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 4

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ V-D
• → • → • -VE

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 5

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ V--D
• → • → • -VE-

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 6

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ VD-
• → • → • V-E

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 7

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ VD
• → • → • VE

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 8

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ V-D
• → • → • VE-

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 9

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ -VD-
• → • → • V--E

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 10

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ -VD
• → • → • V-E

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 11

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ -V-D
• → • → • V-E-

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 12

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ -VD
• → • → • VE-

E ↓ ↘ ↓ ↘ ↓
• → • → •



Alignment 13

V D
• → • → •

V ↓ ↘ ↓ ↘ ↓ --VD
• → • → • VE--

E ↓ ↘ ↓ ↘ ↓
• → • → •



Pongo V D E V G G E L G R L F V V P T Q
Gorilla V E V A G D L G R L L I V Y P S R

Score 4 2 -2 0 6 -6 -3 -4 -2 -2 4 0 4 -1 7 4 1

V
E
V
A
G
D
L
G
R
L
L
I

Y
P
S
R

V

V ED E V G G L G VR L F V P T Q
Pongo

Gorilla



Pongo V D E V G G E L G R L - F V V P T Q
Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1

V
E
V
A
G
D
L
G
R
L
L
I

Y
P
S
R

V

V ED E V G G L G VR L F V P T Q
Pongo

Gorilla



length Seq # 1 length Seq # 2 # alignments

1 1 3

2 2 13

3 3 63

4 4 321

5 5 1,683

6 6 8,989

7 7 48,639

8 8 265,729

9 9 1,462,563
... ... ...

17 17 1,425,834,724,419



Needleman-Wunsch algorithm (paraphrased)

• Work from the top left (beginning of both sequences)

• For each cell store the highest score possible for that cell

and a “back” pointer to tell point to the previous step in the

best path

• When you reach the lower right corner, you know the optimal

score and the back pointers tell you the alignment.

The highest-score calculation at each cell only depends on its

the cell’s three possible previous neighbors.

If one sequence is length N , and the other is length M , then

Needleman-Wunsch only takes ≈ 6NM calculations.

But there are a much larger number of possible alignments.



V D E V G G
0 • • • • • •

V
• • • • • • •

E
• • • • • • •

V
• • • • • • •

A
• • • • • • •

G
• • • • • • •

D
• • • • • • •



V D E V G G
0 ← -5 • • • • •

V ↑
-5 • • • • • •

E
• • • • • • •

V
• • • • • • •

A
• • • • • • •

G
• • • • • • •

D
• • • • • • •



V D E V G G
0 ← -5 ← -10 • • • •

V ↑ ↖
-5 4 • • • • •

E ↑
-10 • • • • • •

V
• • • • • • •

A
• • • • • • •

G
• • • • • • •

D
• • • • • • •



V D E V G G
0 ← -5 ← -10 ← -15 • • •

V ↑ ↖
-5 4 ← -1 • • • •

E ↑ ↑
-10 -1 • • • • •

V ↑
-15 • • • • • •

A
• • • • • • •

G
• • • • • • •

D
• • • • • • •



V D E V G G
0 ← -5 ← -10 ← -15 ← -20 • •

V ↑ ↖
-5 4 ← -1 ← -6 • • •

E ↑ ↑ ↖
-10 -1 6 • • • •

V ↑ ↖ ↑
-15 -6 • • • • •

A ↑
-20 • • • • • •

G
• • • • • • •

D
• • • • • • •



V D E V G G
0 ← -5 ← -10 ← -15 ← -20 ← -25 •

V ↑ ↖
-5 4 ← -1 ← -6 ← -11 • •

E ↑ ↑ ↖ ↖
-10 -1 6 4 • • •

V ↑ ↖ ↑ ↑
-15 -6 1 • • • •

A ↑ ↑
-20 -11 • • • • •

G ↑
-25 • • • • • •

D
• • • • • • •



V D E V G G E L G R L F V V P T Q

0 ← -5 ← -10 ← -15 ← -20 ← -25 ← -30 ← -35 ← -40 ← -45 ← -50 ← -55 ← -60 ← -65 ← -70 ← -75 ← -80 ← -85
V ↑

↖
↖ ↖ ↖

-5 4
←

-1 ← -6 -11 ← -16 ← -21 ← -26 ← -31 ← -36 ← -41 ← -46 ← -51 -56 -61 ← -66 ← -71 ← -76

E ↑ ↑ ↖
↖

↖

-10 -1 6 4 ← -1 ← -6 ← -11 -16 ← -21 ← -26 ← -31 ← -36 ← -41 ← -46 ← -51 ← -56 ← -61 ← -66
V ↑ ↖ ↑ ↖

↖
↖ ↖

-15 -6 1 4 8 ← 3 ← -2 ← -7 ← -12 ← -17 ← -22 ← -27 ← -32 -37 -42 ← -47 ← -52 ← -57
A ↑ ↑ ↑ ↖ ↖

↖
↖ ↖ ↖ ↖ ↖

-20 -11 -4 0 4 8 3 ← -2 ← -7 -12 ← -17 ← -22 ← -27 -32 -37 ← -42 -47 ← -52
G ↑ ↑ ↑ ↑ ↑ ↖

↖
↖

-25 -16 -9 -5 -1 10 14 ← 9 ← 4 -1 ← -6 ← -11 ← -16 ← -21 ← -26 ← -31 ← -36 ← -41
D ↑ ↑ ↖ ↖ ↑ ↑ ↖

↖
-30 -21 -10 -7 -6 5 9 16 ← 11 ← 6 ← 1 ← -4 ← -9 ← -14 ← -19 ← -24 ← -29 ← -34

L ↑ ↑ ↑ ↑ ↖ ↑ ↑ ↑
↖

↖

-35 -26 -15 -12 -6 0 4 11 20 ← 15 ← 10 5 ← 0 ← -5 ← -10 ← -15 ← -20 ← -25
G ↑ ↑ ↑ ↖ ↑ ↖ ↖ ↑ ↑

↖
-40 -31 -20 -17 -11 0 6 6 15 26 ← 21 ← 16 ← 11 ← 6 ← 1 ← -4 ← -9 ← -14

R ↑ ↑ ↑ ↖ ↑ ↑ ↑ ↖ ↑ ↑
↖

-45 -36 -25 -20 -16 -5 1 6 10 21 31 ← 26 ← 21 ← 16 ← 11 ← 6 ← 1 ← -4
L ↑ ↑ ↑ ↑ ↖ ↑ ↑ ↑ ↖ ↑ ↑

↖
-50 -41 -30 -25 -19 -10 -4 1 10 16 26 35 ← 30 ← 25 ← 20 ← 15 ← 10 ← 5

L ↑ ↑ ↑ ↑ ↖ ↑ ↑ ↑ ↖ ↑ ↑ ↖
↖

↖ ↖

-55 -46 -35 -30 -24 -15 -9 -4 5 11 21 30 35 31 26 ← 21 ← 16 ← 11
I ↑ ↑ ↑ ↑ ↖ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↖

↖
↖

-60 -51 -40 -35 -27 -20 -14 -9 0 6 16 25 30 38 34 ← 29 ← 24 ← 19
V ↑ ↖ ↑ ↑ ↖ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↖

↖
-65 -56 -45 -40 -31 -25 -19 -14 -5 1 11 20 25 34 42 ← 37 ← 32 ← 27

Y ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↖ ↑ ↑ ↖ ↖ ↖
-70 -61 -50 -45 -36 -30 -24 -19 -10 -4 6 15 23 29 37 39 35 31

P ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↖

↖

-75 -66 -55 -50 -41 -35 -29 -24 -15 -9 1 10 18 24 32 44 ← 39 34
S ↑ ↑ ↑ ↖ ↑ ↑ ↑ ↖ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↖
-80 -71 -60 -55 -46 -40 -34 -29 -20 -14 -4 5 13 19 27 39 45 ← 40

R ↑ ↑ ↑ ↖ ↑ ↑ ↑ ↖ ↑ ↑ ↖ ↑ ↑ ↑ ↑ ↑ ↑
↖

-85 -76 -65 -60 -51 -45 -39 -34 -25 -19 -9 0 8 14 22 34 40 46





Aligning multiple sequences

B D A C E



Progressive alignment

Devised by Feng and Doolittle 1987 and Higgins and Sharp, 1988. An
approximate method for producing multiple sequence alignments using a
guide tree.

• Perform pairwise alignments to produce a distance matrix

• Produce a guide tree from the distances

• Use the guide tree to specify the ordering used for aligning sequences,
closest to furthest.



A  PEEKSAVTALWGKVN--VDEVGG
B  GEEKAAVLALWDKVN--EEEVGG
C  PADKTNVKAAWGKVGAHAGEYGA
D  AADKTNVKAAWSKVGGHAGEYGA
E  EHEWQLVLHVWAKVEADVAGHGQ

A  -
B  .17  -
C  .59  .60  -
D  .59  .59  .13  -
E  .77  .77  .75  .75  -

A

B

D

C

E

A  PEEKSAVTALWGKVNVDEVGG
B  GEEKAAVLALWDKVNEEEVGG
C  PADKTNVKAAWGKVGAHAGEYGA

E  EHEWQLVLHVWAKVEADVAGHGQ
D  AADKTNVKAAWSKVGGHAGEYGA

A  PEEKSAVTALWGKVNVDEVGG
B  GEEKAAVLALWDKVNEEEVGG
C  PADKTNVKAAWGKVGAHAGEYGA

E  EHEWQLVLHVWAKVEADVAGHGQ
D  AADKTNVKAAWSKVGGHAGEYGA

+

tree inference

pairwise
alignment

alignment stage



Alignment stage of progressive alignments

Sequences of clades become grouped into “profiles” as the

algorithm descends the tree. The next youngest internal nodes

is selected at each step to create a new profile. Alignment at

each step involves

• Sequence-Sequence

• Sequence-Profile

• Profile-Profile



Aligning multiple sequences

B D A C E

Seq-Seq

Seq-Seq

Seq-Profile

Profile-Profile

0.1

0.1 0.2

0.12

0.09

0.15
0.27

.1



Profile to Profile alignment

V
E
V
A
G
D
L
G
R
L
L
I

Y
P
S
R

A

V ED E V G G L G MR L F V P T Q
L DD E V - G A G VR L F V P T Q

V
E
I
A
G
D
L
-
-
L
L
L

Y
P
T
R

V

V
E
V
A
G
E
L
-
-
L
L
L

Y
P
T
K

I



Profile to profile alignments

Adding a gap to a profile means that every member of that

group of sequences gets a gap at that position of the sequence.

Usually the scores for each edge in the Needleman-Wünsch

graph are calculated using a “sum of pairs” scoring system.

clustal W1 uses weights assigned to each sequence in a profile

group to downweight closely related sequences so that they are

not overrepresented.

1Thompson, Higgins, and Gibson. Nuc. Acids. Res. 1994



Profile 1 Profile 2
Seq weight AA

taxon A 0.3 V
taxon C 0.24 A
taxon E 0.19 I

Seq weight AA

taxon B 0.15 V
taxon D 0.25 M

DP1,P2 =

∑
i

∑
j wiwjdij

ninj

=
1
6

[d(V, V )wAwB + d(V,M)wAwD + d(A, V )wCwB . . .

= . . . d(A,M)wCwD + d(I, V )wEwB + d(I,M)wEwD]

=
1
6
(4× 0.3× 0.15 + 1× 0.3× 0.25 + 0× 0.24× 0.15 . . .

= . . .−1× 0.24× 0.25 + 3× 0.19× 0.15 + 1× 0.19× 0.15)

= 1.46225



Dealing with alignment ambiguity2

divergent taxon pairs and least between more highly
divergent taxon pairs10,11. The multiple alignments
generated by different parameter combinations are
then analysed separately and the only relationships
that are accepted are those that are identified across 
all (or most) alignments, that is, are present in the
strict (or majority rule) consensus of the trees that are
produced by the alternative alignments12.

This approach has not been formally named but 
is termed here the ‘multiple analysis method’. The
major drawbacks include the need for multiple and
time-consuming analyses. There is also the problem
of which trees to accept (and conversely, which to
ignore) if different alignments produce different trees.
The most conservative and objective approach of
considering all trees, and accepting relationships
found across all of these, can lead to substantial and
arguably unnecessary loss of information, especially
if a single aberrant tree is present. Choosing only a
subset of these trees, however, is subjective: for
instance, one might choose the single alignment and
tree that maximizes likelihood or minimizes either
character or topological incongruence with other 

data sets because strong phylogenetic signal is
required to generate incongruence; however, the
latter criteria might lead to choosing the alignments
containg the least phylogenetic information13,14.

Elision
In the ‘elision’method, a range of plausible
alignments is generated as detailed above. However,
instead of being analysed separately, they are
combined (‘concatenated’) into a single large matrix
and evaluated in a single analysis1,15. In Fig. 1,
combining the two possible alignments (Fig. 1b,c) 
into a single matrix (Fig. 1e) would incorporate
successfully the phylogenetic information in region Y.
The alignment of the alignment-ambiguous region 
is actually constant across taxa A–C; furthermore,
taxa D and E are always aligned so that they share
identical nucleotides and a three-base gap (Fig. 1b,c).
These consistent ‘blocks of information’appear in
every alignment and will thus be weighted the same
as the signal in alignment-constant positions
(regions X and Z). The method preferentially
downweights only the alignment-variable portions 
of the data matrix (region Y), but still retains any
consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision
method on four counts. First, if many plausible
alignments are concatenated, the alignment-variable
regions are downweighted so severely that they are in
effect deleted. However, this criticism is unjustified
because, if there are (for example) ten different
possible alignments, some regions will align
constantly across all ten alignments, some regions
might ‘flip’ equally between two alignments across 
all ten, whereas other regions might be aligned
differently in all ten. The elision method would
weight fully (100%) the only possible alignment in 
the first regions, would downweight by 50% each
alignment in the second regions, and would weight
minimally (10%) each in the third regions; thus,
alignment-variable regions are downweighted only in
proportion to their variability. A second criticism was
that ‘the implications for homology are unsettling,
because individual bases [positions?] must have
individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that
biological homology is all-or-nothing: two positions 
in two taxa are homologous if they are orthologous
descendants of a position present in the latest
common ancestor of the two taxa. However, the
accuracy of inferences of homology (i.e. alignment) 
is not all-or-nothing, but instead probabilistic16; it
thus seems reasonable to weight these inferences
accordingly17,18. By downweighting alignments found
only in restricted regions of parameter space, the
elision method makes the arguably reasonable
assumption that such alignments are less probable.

The two remaining criticisms were that certain
data sets could contain a plethora of alternative
alignments, and concatenation of all these
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Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-
encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied
by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)
of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are
re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate
character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for
all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.

divergent taxon pairs and least between more highly
divergent taxon pairs10,11. The multiple alignments
generated by different parameter combinations are
then analysed separately and the only relationships
that are accepted are those that are identified across 
all (or most) alignments, that is, are present in the
strict (or majority rule) consensus of the trees that are
produced by the alternative alignments12.

This approach has not been formally named but 
is termed here the ‘multiple analysis method’. The
major drawbacks include the need for multiple and
time-consuming analyses. There is also the problem
of which trees to accept (and conversely, which to
ignore) if different alignments produce different trees.
The most conservative and objective approach of
considering all trees, and accepting relationships
found across all of these, can lead to substantial and
arguably unnecessary loss of information, especially
if a single aberrant tree is present. Choosing only a
subset of these trees, however, is subjective: for
instance, one might choose the single alignment and
tree that maximizes likelihood or minimizes either
character or topological incongruence with other 

data sets because strong phylogenetic signal is
required to generate incongruence; however, the
latter criteria might lead to choosing the alignments
containg the least phylogenetic information13,14.

Elision
In the ‘elision’method, a range of plausible
alignments is generated as detailed above. However,
instead of being analysed separately, they are
combined (‘concatenated’) into a single large matrix
and evaluated in a single analysis1,15. In Fig. 1,
combining the two possible alignments (Fig. 1b,c) 
into a single matrix (Fig. 1e) would incorporate
successfully the phylogenetic information in region Y.
The alignment of the alignment-ambiguous region 
is actually constant across taxa A–C; furthermore,
taxa D and E are always aligned so that they share
identical nucleotides and a three-base gap (Fig. 1b,c).
These consistent ‘blocks of information’appear in
every alignment and will thus be weighted the same
as the signal in alignment-constant positions
(regions X and Z). The method preferentially
downweights only the alignment-variable portions 
of the data matrix (region Y), but still retains any
consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision
method on four counts. First, if many plausible
alignments are concatenated, the alignment-variable
regions are downweighted so severely that they are in
effect deleted. However, this criticism is unjustified
because, if there are (for example) ten different
possible alignments, some regions will align
constantly across all ten alignments, some regions
might ‘flip’ equally between two alignments across 
all ten, whereas other regions might be aligned
differently in all ten. The elision method would
weight fully (100%) the only possible alignment in 
the first regions, would downweight by 50% each
alignment in the second regions, and would weight
minimally (10%) each in the third regions; thus,
alignment-variable regions are downweighted only in
proportion to their variability. A second criticism was
that ‘the implications for homology are unsettling,
because individual bases [positions?] must have
individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that
biological homology is all-or-nothing: two positions 
in two taxa are homologous if they are orthologous
descendants of a position present in the latest
common ancestor of the two taxa. However, the
accuracy of inferences of homology (i.e. alignment) 
is not all-or-nothing, but instead probabilistic16; it
thus seems reasonable to weight these inferences
accordingly17,18. By downweighting alignments found
only in restricted regions of parameter space, the
elision method makes the arguably reasonable
assumption that such alignments are less probable.

The two remaining criticisms were that certain
data sets could contain a plethora of alternative
alignments, and concatenation of all these
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Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-
encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied
by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)
of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are
re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate
character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for
all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.

divergent taxon pairs and least between more highly
divergent taxon pairs10,11. The multiple alignments
generated by different parameter combinations are
then analysed separately and the only relationships
that are accepted are those that are identified across 
all (or most) alignments, that is, are present in the
strict (or majority rule) consensus of the trees that are
produced by the alternative alignments12.

This approach has not been formally named but 
is termed here the ‘multiple analysis method’. The
major drawbacks include the need for multiple and
time-consuming analyses. There is also the problem
of which trees to accept (and conversely, which to
ignore) if different alignments produce different trees.
The most conservative and objective approach of
considering all trees, and accepting relationships
found across all of these, can lead to substantial and
arguably unnecessary loss of information, especially
if a single aberrant tree is present. Choosing only a
subset of these trees, however, is subjective: for
instance, one might choose the single alignment and
tree that maximizes likelihood or minimizes either
character or topological incongruence with other 

data sets because strong phylogenetic signal is
required to generate incongruence; however, the
latter criteria might lead to choosing the alignments
containg the least phylogenetic information13,14.

Elision
In the ‘elision’method, a range of plausible
alignments is generated as detailed above. However,
instead of being analysed separately, they are
combined (‘concatenated’) into a single large matrix
and evaluated in a single analysis1,15. In Fig. 1,
combining the two possible alignments (Fig. 1b,c) 
into a single matrix (Fig. 1e) would incorporate
successfully the phylogenetic information in region Y.
The alignment of the alignment-ambiguous region 
is actually constant across taxa A–C; furthermore,
taxa D and E are always aligned so that they share
identical nucleotides and a three-base gap (Fig. 1b,c).
These consistent ‘blocks of information’appear in
every alignment and will thus be weighted the same
as the signal in alignment-constant positions
(regions X and Z). The method preferentially
downweights only the alignment-variable portions 
of the data matrix (region Y), but still retains any
consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision
method on four counts. First, if many plausible
alignments are concatenated, the alignment-variable
regions are downweighted so severely that they are in
effect deleted. However, this criticism is unjustified
because, if there are (for example) ten different
possible alignments, some regions will align
constantly across all ten alignments, some regions
might ‘flip’ equally between two alignments across 
all ten, whereas other regions might be aligned
differently in all ten. The elision method would
weight fully (100%) the only possible alignment in 
the first regions, would downweight by 50% each
alignment in the second regions, and would weight
minimally (10%) each in the third regions; thus,
alignment-variable regions are downweighted only in
proportion to their variability. A second criticism was
that ‘the implications for homology are unsettling,
because individual bases [positions?] must have
individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that
biological homology is all-or-nothing: two positions 
in two taxa are homologous if they are orthologous
descendants of a position present in the latest
common ancestor of the two taxa. However, the
accuracy of inferences of homology (i.e. alignment) 
is not all-or-nothing, but instead probabilistic16; it
thus seems reasonable to weight these inferences
accordingly17,18. By downweighting alignments found
only in restricted regions of parameter space, the
elision method makes the arguably reasonable
assumption that such alignments are less probable.

The two remaining criticisms were that certain
data sets could contain a plethora of alternative
alignments, and concatenation of all these
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Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-
encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied
by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)
of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are
re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate
character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for
all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.

2from M. S. Y. Lee, TREE, 2001



Dealing with alignment ambiguity3 - deletion

divergent taxon pairs and least between more highly
divergent taxon pairs10,11. The multiple alignments
generated by different parameter combinations are
then analysed separately and the only relationships
that are accepted are those that are identified across 
all (or most) alignments, that is, are present in the
strict (or majority rule) consensus of the trees that are
produced by the alternative alignments12.

This approach has not been formally named but 
is termed here the ‘multiple analysis method’. The
major drawbacks include the need for multiple and
time-consuming analyses. There is also the problem
of which trees to accept (and conversely, which to
ignore) if different alignments produce different trees.
The most conservative and objective approach of
considering all trees, and accepting relationships
found across all of these, can lead to substantial and
arguably unnecessary loss of information, especially
if a single aberrant tree is present. Choosing only a
subset of these trees, however, is subjective: for
instance, one might choose the single alignment and
tree that maximizes likelihood or minimizes either
character or topological incongruence with other 

data sets because strong phylogenetic signal is
required to generate incongruence; however, the
latter criteria might lead to choosing the alignments
containg the least phylogenetic information13,14.

Elision
In the ‘elision’method, a range of plausible
alignments is generated as detailed above. However,
instead of being analysed separately, they are
combined (‘concatenated’) into a single large matrix
and evaluated in a single analysis1,15. In Fig. 1,
combining the two possible alignments (Fig. 1b,c) 
into a single matrix (Fig. 1e) would incorporate
successfully the phylogenetic information in region Y.
The alignment of the alignment-ambiguous region 
is actually constant across taxa A–C; furthermore,
taxa D and E are always aligned so that they share
identical nucleotides and a three-base gap (Fig. 1b,c).
These consistent ‘blocks of information’appear in
every alignment and will thus be weighted the same
as the signal in alignment-constant positions
(regions X and Z). The method preferentially
downweights only the alignment-variable portions 
of the data matrix (region Y), but still retains any
consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision
method on four counts. First, if many plausible
alignments are concatenated, the alignment-variable
regions are downweighted so severely that they are in
effect deleted. However, this criticism is unjustified
because, if there are (for example) ten different
possible alignments, some regions will align
constantly across all ten alignments, some regions
might ‘flip’ equally between two alignments across 
all ten, whereas other regions might be aligned
differently in all ten. The elision method would
weight fully (100%) the only possible alignment in 
the first regions, would downweight by 50% each
alignment in the second regions, and would weight
minimally (10%) each in the third regions; thus,
alignment-variable regions are downweighted only in
proportion to their variability. A second criticism was
that ‘the implications for homology are unsettling,
because individual bases [positions?] must have
individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that
biological homology is all-or-nothing: two positions 
in two taxa are homologous if they are orthologous
descendants of a position present in the latest
common ancestor of the two taxa. However, the
accuracy of inferences of homology (i.e. alignment) 
is not all-or-nothing, but instead probabilistic16; it
thus seems reasonable to weight these inferences
accordingly17,18. By downweighting alignments found
only in restricted regions of parameter space, the
elision method makes the arguably reasonable
assumption that such alignments are less probable.

The two remaining criticisms were that certain
data sets could contain a plethora of alternative
alignments, and concatenation of all these
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Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-
encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied
by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)
of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are
re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate
character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for
all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.
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Taxon C T A G T G A A G C C A G
Taxon D T A G ? ? ? - - - C A G
Taxon E T A G ? ? ? - - - C A G

3from M. S. Y. Lee, TREE, 2001



Dealing with alignment ambiguity4

Elision method (Wheeler, 1995) involves simply concatenating

matrices.

divergent taxon pairs and least between more highly
divergent taxon pairs10,11. The multiple alignments
generated by different parameter combinations are
then analysed separately and the only relationships
that are accepted are those that are identified across 
all (or most) alignments, that is, are present in the
strict (or majority rule) consensus of the trees that are
produced by the alternative alignments12.

This approach has not been formally named but 
is termed here the ‘multiple analysis method’. The
major drawbacks include the need for multiple and
time-consuming analyses. There is also the problem
of which trees to accept (and conversely, which to
ignore) if different alignments produce different trees.
The most conservative and objective approach of
considering all trees, and accepting relationships
found across all of these, can lead to substantial and
arguably unnecessary loss of information, especially
if a single aberrant tree is present. Choosing only a
subset of these trees, however, is subjective: for
instance, one might choose the single alignment and
tree that maximizes likelihood or minimizes either
character or topological incongruence with other 

data sets because strong phylogenetic signal is
required to generate incongruence; however, the
latter criteria might lead to choosing the alignments
containg the least phylogenetic information13,14.

Elision
In the ‘elision’method, a range of plausible
alignments is generated as detailed above. However,
instead of being analysed separately, they are
combined (‘concatenated’) into a single large matrix
and evaluated in a single analysis1,15. In Fig. 1,
combining the two possible alignments (Fig. 1b,c) 
into a single matrix (Fig. 1e) would incorporate
successfully the phylogenetic information in region Y.
The alignment of the alignment-ambiguous region 
is actually constant across taxa A–C; furthermore,
taxa D and E are always aligned so that they share
identical nucleotides and a three-base gap (Fig. 1b,c).
These consistent ‘blocks of information’appear in
every alignment and will thus be weighted the same
as the signal in alignment-constant positions
(regions X and Z). The method preferentially
downweights only the alignment-variable portions 
of the data matrix (region Y), but still retains any
consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision
method on four counts. First, if many plausible
alignments are concatenated, the alignment-variable
regions are downweighted so severely that they are in
effect deleted. However, this criticism is unjustified
because, if there are (for example) ten different
possible alignments, some regions will align
constantly across all ten alignments, some regions
might ‘flip’ equally between two alignments across 
all ten, whereas other regions might be aligned
differently in all ten. The elision method would
weight fully (100%) the only possible alignment in 
the first regions, would downweight by 50% each
alignment in the second regions, and would weight
minimally (10%) each in the third regions; thus,
alignment-variable regions are downweighted only in
proportion to their variability. A second criticism was
that ‘the implications for homology are unsettling,
because individual bases [positions?] must have
individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that
biological homology is all-or-nothing: two positions 
in two taxa are homologous if they are orthologous
descendants of a position present in the latest
common ancestor of the two taxa. However, the
accuracy of inferences of homology (i.e. alignment) 
is not all-or-nothing, but instead probabilistic16; it
thus seems reasonable to weight these inferences
accordingly17,18. By downweighting alignments found
only in restricted regions of parameter space, the
elision method makes the arguably reasonable
assumption that such alignments are less probable.

The two remaining criticisms were that certain
data sets could contain a plethora of alternative
alignments, and concatenation of all these
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X        Y        Z
 1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

Outgroup T A G A G C A C T C A G 
Taxon A T A G A G C A C T C A G
Taxon B T A G T G A A G C C A G 
Taxon C T A G T G A A G C C A G
Taxon D T A G    A G C    C A G
Taxon E T A G    A G C    C A G

(a)

(c)

X        Y        Z
 1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

Outgroup T A G A G C A C T C A G 
Taxon A T A G A G C A C T C A G
Taxon B T A G T G A A G C C A G 
Taxon C T A G T G A A G C C A G
Taxon D T A G A G C - - - C A G
Taxon E T A G A G C - - - C A G

(b)

X        Y        Z    
 1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

Outgroup T A G A G C A C T C A G 
Taxon A T A G A G C A C T C A G
Taxon B T A G T G A A G C C A G 
Taxon C T A G T G A A G C C A G
Taxon D T A G - - - A G C C A G
Taxon E T A G - - - A G C C A G

(d)

            X     Y     Z
 1 2 3  "Y"  1 1 1

0 1 2

Outgroup T A G 1   C A G
Taxon A T A G   1   C A G
Taxon B T A G   2   C A G
Taxon C   T A G   2   C A G
Taxon D   T A G   3   C A G
Taxon E   T A G   3   C A G

   1 2 3

1  - 4 3
2  4 - 3
3  3 3 -

To state

Fr
om

 s
ta

te

(f) (g)

(e) X        Y        Z    
 1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

Outgroup T A G A G C A C T C A G
Taxon A T A G A G C A C T C A G
Taxon B T A G T G A A G C C A G
Taxon C T A G T G A A G C C A G
Taxon D T A G - - - A G C C A G
Taxon E T A G - - - A G C C A G

X        Y        Z    
1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

T A G A G C A C T C A G 
T A G A G C A C T C A G
T A G T G A A G C C A G 
T A G T G A A G C C A G
T A G A G C - - - C A G
T A G A G C - - - C A G

D E

Deletion

A B C

4, 6, 8, 9

Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-
encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied
by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)
of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are
re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate
character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for
all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.

4from M. S. Y. Lee, TREE, 2001



Simultaneous tree inference and alignment

• Ideally we would address uncertainty in both types of

inference at the same time

• Allows for application of statistical models to improve

inference and assessments of reliability

• Just now becoming feasible: POY (Wheeler, Gladstein,

Laet, 2002), Handel (Holmes and Bruno, 2001), BAliPhy
(Redelings and Suchard, 2005), and BEAST(Lunter et al.,

2005, Drummond and Rambaut, 2003). SATe (Liu et al

2009; Yu and Holder software).
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