In the model jumping move that we covered in class the relevant parts were:

and:

One of the first things to realize is that the 1 or 2 variable in the index 2 of theta_to_alter is not really a parameter, it is just a flag that tells us what model we are using.

So the math here is that the jump from model #1 to model 2 is:

$$u \sim U(0,1)$$

 $\sigma^* = \frac{-\ln(1-u)}{\lambda_{\sigma}}$

where λ_{σ} is the hazard parameter of the exponential distribution that we are using as a proposal distribution (by coincidence, I chose this same distribution as my prior for σ , but that is not required for the move to work). So in there is really only 1 parameter (and one random variable) to analyze here.

Because the density of u is 1.0, the Hasting's ratio is just the absolute value of the determinant of the Jacobian. And the Jacobian is just a 1×1 matrix, so the determinant is the only element of the matrix namely:

$$\frac{\partial \sigma^*}{\partial u} = \frac{1}{(1-u)\lambda_{\sigma}}$$

Just rephrasing that result to get rid of the reference to u we get:

$$\sigma^* = \frac{-\ln(1-u)}{\lambda_{\sigma}}$$

$$\sigma^* \lambda_{\sigma} = -\ln(1-u)$$

$$e^{-\sigma^* \lambda_{\sigma}} = 1-u$$

$$J = \frac{\partial \sigma^*}{\partial u} = \frac{1}{(1-u)\lambda_{\sigma}}$$

$$= \left(\frac{1}{\lambda_{\sigma}}\right) \left(e^{\sigma^* \lambda_{\sigma}}\right)$$

$$\ln J = -\ln(\lambda_{\sigma}) + \sigma^* \lambda_{\sigma}$$

This is how I derived the log Hasting's ratio in the code:

ln_hastings_ratio = -log(sigma_prior_hazard_param) + sigma_prior_hazard_param*sigma_star