Cartoon time courtesy of the ? view of tree space

Pattern Frequency Space With Observed Data

Parametric bootstrapping in Pattern Frequency Space P(1100) Uses the δ test statistic and a null distribution centered on point that arises from the best tree in H_0 P(1001) P(1010)

Susko modification to param. boot.: Uses the δ test statistic and a null distribution *centered* on point that arises from the best tree in H_0 but with branches in conflict with \hat{T} constrained. to be 0.

P(1010)

P(1001)

P(1100)

Efron et al. (1996) view of tree space

Imagine hypothesis tests of locations with different border shapes:

Similar dataset with point estimates (red dot) in H_1 Green dot is the hardest set of locations in H_0 to reject.

Non-parametric Bootstrapping in Pattern Frequency Space

Bootstrapping in Pattern Frequency Space (if you had more data)

aBP in Pattern Frequency Space

P(1100)

Efron, B., Halloran, E., and Holmes, S. (1996). Bootstrap confidence levels for phylogenetic trees. *Proceedings of the National Academy of Science*, *U. S. A.*, 93:13429–13434.