Cartoon time courtesy of the ? view of tree space

Parsimony-informative Pattern Frequency Space

P(1100)

Parsimony-informative Pattern Frequency Space

$P(1100)$

Parsimony-informative Pattern Frequency Space

Parsimony-informative Pattern Frequency Space

$P(1100)$

Pattern Frequency Space With Observed Data

ML scores in Pattern Frequency Space

P(1100)
$\ln L\left(T_{1} \mid X\right)=-D_{K L}\left(f_{X} \mid f_{T_{1}}\right)$

LR statistics in Pattern Frequency Space
P(1100)
Black is $\ln L\left(T_{A B}\right)-\ln L\left(T_{A C}\right)$

KH Test in Pattern Frequency Space

P(1100)
Uses the δ test statistic and a null distribution centered on the boundary

Parametric bootstrapping in Pattern Frequency Space

$P(1100)$
Uses the δ test statistic and a null distribution centered on point that arises from the best tree in H_{0}

Susko modification to param. boot.:
Uses the δ test statistic and a null distribution centered on point that arises from the best tree in H_{0} but with branches in conflict with \hat{T} constrained. to be 0 .

P(1100)

P(1010)
P(1001)

Efron et al. (1996) view of tree space

Parsimony-informative Pattern Frequency Space

P(1100)

Imagine hypothesis tests of locations with different border shapes:

Similar dataset with point estimates (red dot) in H_{1}
Green dot is the hardest set of locations in H_{0} to reject.

Non-parametric Bootstrapping in Pattern Frequency Space

Bootstrapping in Pattern Frequency Space (if you had more data)

P(1100)

AU Test uses multiple sequence lengths to correct BP for any curvature in the boundary between trees

aBP in Pattern Frequency Space

Null distribution for BP
is calculated using
Normal approximations from polytomy

P(1100)

$\mathrm{P}(1010)$
P(1001)

aLRT and aBayes in Pattern Frequency Space

$\mathrm{P}(1100)$
In aLRT, we use mixtures of χ^{2} and selection bias corrections to calculate the P-value.

In aBayes, we normalize the ML scores to sum to 1

References

Efron, B., Halloran, E., and Holmes, S. (1996). Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Science, U. S. A., 93:13429-13434.

