
Cartoon time courtesy of the ? view of tree space

methods now can be drawn as a partitioning of the
simplex into labeled points (each label being the iden-
tity of the tree topology). In the following sections, I use
this geometric setup to give a pictorial description of a
variety of concepts and phenomena that arise in phy-
logenetic estimation.

Applications

Combining Data Sets and Mixture Models

Combining data sets has been extensively discussed in
the literature (see De Queiroz et al., 1995). Given the
view of data sets as points in the character pattern sim-
plex, we can obtain a very simple geometrical picture of a
combined data set. Associate with data set X a point x in
the simplex, and with data set Y a point y in the simplex.
Then the combination of the two data sets lies on a line
connecting the two data sets because it is a convex linear
combination of the frequencies of character patterns in
each data set. The exact position on the line will depend
on the relative sizes of the data sets such that the ratio of
the distance from the combined data set to the two orig-
inal data sets will be proportional to the relative sizes of
the data sets (Fig. 8a).

The same picture can be drawn for mixture models
where some of the characters are generated from one
kind of model (say a model with fast rates of evolution)
and the other characters are generated from a different
kind of model (say a model with slow rates of evolu-
tion). Again, the mixture model lies on some point
within the line drawn between the two points repre-
senting the original models. The position of the point
representing the mixture model depends now on the
model of the mixture. For example, we might have a
mixture model consisting of 1

2 probability of drawing

from model X (with the corresponding point x) and 1
2

probability of drawing from model Y (with the corre-
sponding point y). Then the mixture model will be
represented by a point halfway on the line connecting x
and y. More generally, there might be a mixture model
of drawing from model X with probability ! and draw-
ing from model Y with probability 1 ! !. Then the
point representing the mixture model is ! distance
away from point y (assuming that the line connecting x
and y has unit distance; Fig. 8a). More complicated
models can be generated with the assumption that !
has some prior distribution like the beta distribution.
Then, the unconditional mixture model is obtained by
integrating over the prior distribution (in a suitable
sense) and the mixture model point will be a/(a " b)
distance from point y, where a and b are the parame-
ters of the beta distribution.

This discussion can be extended to the commonly
used model of gamma distributed rate mixture models

FIG. 8. (a) When two models or two data sets are combined, it
corresponds to drawing a line between the two model points in the
simplex (shown labeled as x and y) and selecting a point on the line.
The particular position of the mixture (combination) point is propor-
tional to the mixture proportions. (b) A model of rate variation across
sites can be seen as a model curve that is a subset of model manifold.
The (vector-valued) model curve, c(#), is parameterized by the rate
variable, #. Points along this curve correspond to taking a particular
tree shape and expanding the shape or contracting the shape (shown
by the trees on the left). (c) A gamma distribution model of rate
variation across sites is equivalent to integrating the model curve,
c(#). The result of the integration is a point inside the convex hull of
the model curve.

FIG. 7. A schematic diagram of the geometry of phylogenetic
estimation. The triangle represents the character pattern simplex.
The tree model is a subspace of this simplex (shown as the gray
object). A tree estimation method is a partition of the simplex into
tree topologies (shown as the speckled object). Finite-sized data sets
are rational points of the simplex (shown as a grid).
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Pattern Frequency Space With Observed Data
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ML scores in Pattern Frequency Space
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lnL(T1 | X) = −DKL(fX | fT1)



LR statistics in Pattern Frequency Space
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Black is lnL(TAB)− lnL(TAC) Yellow is lnL(TAB)− lnL(TAD)



KH Test in Pattern Frequency Space
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Parametric bootstrapping in Pattern Frequency Space
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Susko modification to

param. boot.:

Uses the δ test statistic

and a null distribution

centered on point that

arises from the best

tree in H0 but with

branches in conflict

with T̂ constrained.

to be 0.



Efron et al. (1996) view of tree space

coefficient between the first two malaria species, Pre and Pme,
at the 221 sites, with (A, G, C, T) interpreted as (1, 2, 5, 6): !̂ !
0.616. How accurate is !̂ as an estimate of the true correla-
tion !? The nonparametric bootstrap answers such questions
without making distributional assumptions.

Each bootstrap data set x* gives a bootstrap estimate !̂*, in
this case the sample correlation between the first two rows of
x*. The central idea of the bootstrap is to use the observed
distribution of the differences !̂* " !̂ to infer the unobservable
distribution of !̂ " !; in other words to learn about the accuracy
of !̂. In our example, the 200 bootstrap replications of !̂* " !̂
were observed to have expectation 0.622 and standard devi-
ation 0.052. The inference is that !̂ is nearly unbiased for
estimating !, with a standard error of about 0.052. We can also
calculate bootstrap confidence intervals for !. A well-
developed theory supports the validity of these inferences [see
Efron and Tibshirani (1)].

Felsenstein’s application of the bootstrap is nonstandard in
one important way: the statistic TRÊE, unlike the correlation
coefficient, does not change smoothly as a function of the data
set x. Rather, TRÊE is constant within large regions of the
x-space, and then changes discontinuously as certain bound-
aries are crossed. This behavior raises questions about the
bootstrap inferences, questions that are investigated in the
sections that follow.

A Model For The Bootstrap

The rationale underlying the bootstrap confidence values
depends on a simple multinomial probability model. There are
K ! 411 " 4 possible column vectors for x, the number of
vectors of length 11 based on a 4-letter alphabet, not counting
the 4 monotypic ones. Call these vectors X1, X2, . . ., XK, and
suppose that each observed column of x is an independent

selection from X1, X2, . . ., XK, equaling Xk with probability "k.
This is the multinomial model for the generation of x.

Denote
˜
" ! ("1, "2,. . ., "K), so the sum of

˜
" ’s coordinates

is 1. The data matrix x can be characterized by the proportion
of its n ! 221 columns equalling each possible Xk, say

"̂k # ##columns of x equalling Xk$!n,

with
˜
"̂ ! ("̂1, "̂2, . . ., "̂K). This is a very inefficient way to

represent the data, since 411 " 4 is so much bigger than 221,
but it is useful for understanding the bootstrap. Later we will
see that only the vectors Xk that actually occur in x need be
considered, at most n of them.

Almost always the distance matrix D̂ is a function of the
observed proportions

˜
"̂, so we can write the tree-building

algorithm as

"̂
˜
3 D̂ 3 TRÊE.

In a similar way the vector of true probabilities
˜
" gives a true

distance matrix and a true tree,

"
˜
3 D 3 TREE.

D would be the matrix with ijth element {%k"k(Xki " Xk j)2}1!2

in our example, and TREE the tree obtained by applying the
maximizing connection algorithm to D.

Fig. 3 is a schematic picture of the space of possible
˜
"

vectors, divided into regions !1, !2, . . .. The regions corre-
spond to different possible trees, so if "

˜
! !j the jth possible

tree results. We hope that TRÊE ! TREE, which is to say

FIG. 1. Part of the data matrix of aligned nucleotide sequences for the malaria parasite Plasmodium. Shown are the first 20 columns of the 11
& 221 matrix x of polytypic sites used in most of the analyses below. The final analysis of the last section also uses the data from 1399 monotypic
sites.

FIG. 2. Phylogenetic tree based on the malaria data matrix; species
are numbered as in Fig. 1. The numbers at the branches are confidence
values based on Felsenstein’s bootstrap method. B ! 200 bootstrap
replications.

FIG. 3. Schematic diagram of tree estimation; triangle represents
the space of all possible

˜
" vectors in the multinomial probability

model; regions !1, !2. . . correspond to the different possible trees.
In the case shown

˜
" and

˜
"̂ lie in the same region so TREE !

TRÊE, but
˜
"̂ * lies in a region where TRÊE* does not have the 9-10

clade.

13430 Correction Efron et al. Proc. Natl. Acad. Sci. USA 93 (1996)
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Imagine hypothesis tests of locations with different border shapes:
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Similar dataset with point estimates (red dot) in H1

Green dot is the hardest set of locations in H0 to reject.



Non-parametric Bootstrapping in Pattern Frequency
Space
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Bootstrapping in Pattern Frequency Space (if you had
more data)

AU Test uses multiple sequence

lengths to correct BP for

any curvature in the

boundary between

trees
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aBP in Pattern Frequency Space

Null distribution for BP
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aLRT and aBayes in Pattern Frequency Space
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In aLRT, we use mixtures of χ2

and selection bias corrections

to calculate the P -value.

In aBayes, we normalize

the ML scores to sum to 1
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