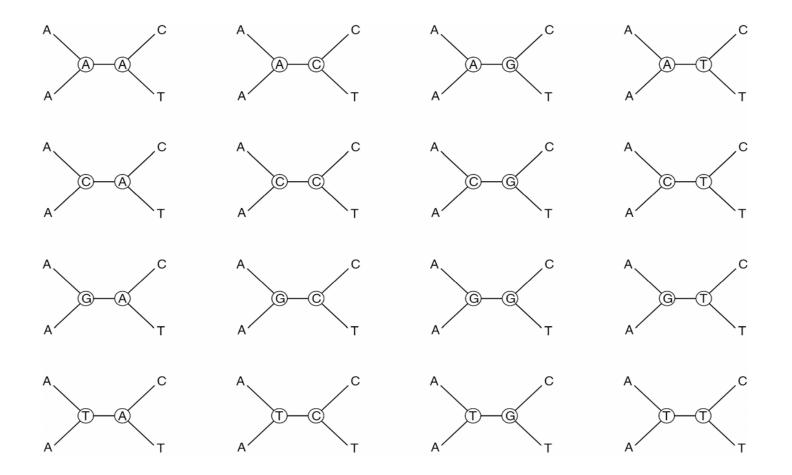
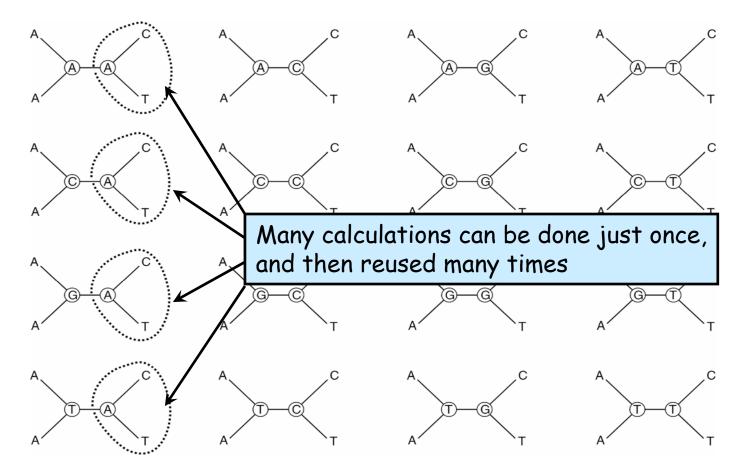

Likelihood of a tree

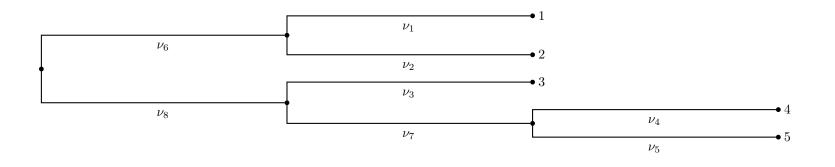
(data for only one site shown)



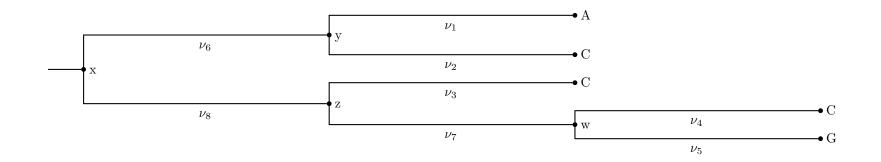
Likelihood for site k


Copyright © 2007 Paul O. Lewis

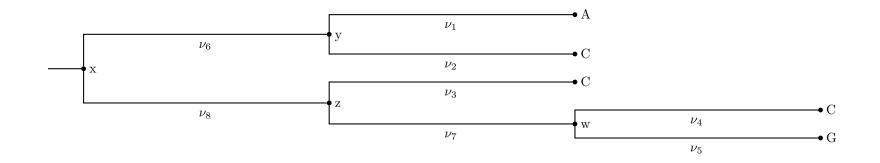
Brute force approach would be to calculate L_k for all 16 combinations of ancestral states and sum

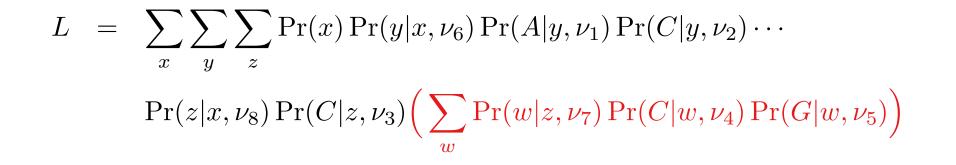

Copyright © 2007 Paul O. Lewis

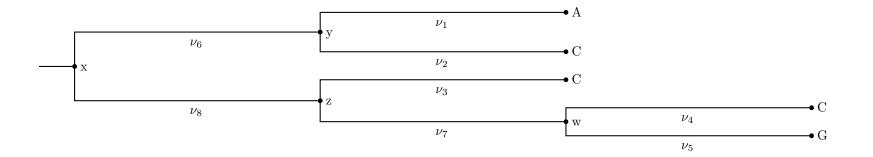
Pruning algorithm* (same result, much less time)

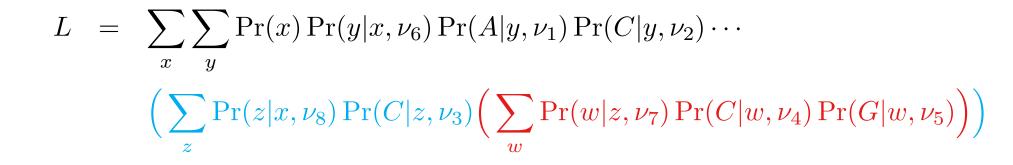


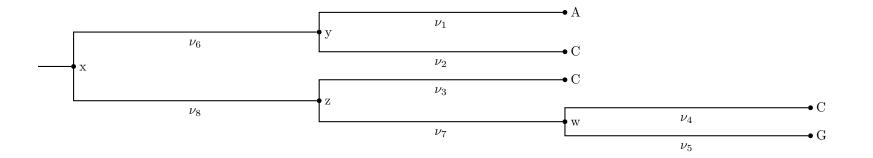
*The pruning algorithm was introduced by: Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17:368-376 Copyright © 2007 Paul O. Lewis

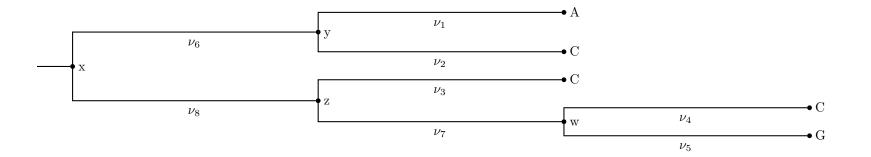

Taxon	Character
1	A
2	C
3	C
4	C
5	G




 $L = \sum \sum \sum \sum \Pr(x, y, z, w, A, C, C, C, G | \boldsymbol{\nu})$ $x \quad y \quad z \quad w$




 $L = \sum_{x} \sum_{y} \sum_{z} \sum_{w} \Pr(x) \Pr(y|x,\nu_6) \Pr(A|y,\nu_1) \Pr(C|y,\nu_2) \cdots$ $\Pr(z|x,\nu_8) \Pr(C|z,\nu_3) \Pr(w|z,\nu_7) \Pr(C|w,\nu_4) \Pr(G|w,\nu_5)$



$$L = \sum_{x} \Pr(x) \left(\sum_{y} \Pr(y|x,\nu_{6}) \Pr(A|y,\nu_{1}) \Pr(C|y,\nu_{2}) \right) \cdots \\ \left(\sum_{z} \Pr(z|x,\nu_{8}) \Pr(C|z,\nu_{3}) \left(\sum_{w} \Pr(w|z,\nu_{7}) \Pr(C|w,\nu_{4}) \Pr(G|w,\nu_{5}) \right) \right)$$

Maximum likelihood is a <u>lot</u> of work

- Site likelihoods involve products of transition probabilities, summed over ancestral states
- Overall log-likelihood for a tree is sum of site log-likelihoods
- Overall log-likelihood must be maximized!
 - must find MLEs for all edge lengths and all model parameters
 - this involves computing the overall log-likelihood many, many times (try turning on logiter in PAUP to get a feel for how much work this involves)
- Maximized lnL can now be compared to maximized lnL from other trees

Is it worth it?

- Uses all information
 - Parsimony ignores constant and autapomorphic sites
 - Distance methods ignore information not captured in pairwise comparisons
- Model generality
 - Some models possible with distance methods, but some quantities cannot be estimated reliably (e.g. variation in rates across sites)
 - Many parsimony variants exist, but parsimony does not allow estimation of the step matrix entries, for example
 - Many complex models are only possible under likelihood or Bayesian methods (which have a likelihood foundation)

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution*, 16:111–120.

Green Plant rbcL First 88 amino acids, translation is for *Zea mays*

MSPQTETKASVGFKAGVKDYKLTYYTPEYETKDTDILAAFRVTP		
Chara	(green alga; land plant lineage)	AAAGATTACAGATTAACTTACTATACTCCTGAGTATAAAACTAAAGATACTGACATTTTAGCTGCATTTCGTGTAACTCCA
Chlorella	(green alga)	CC.TA.GC.TCCA.GTC.TAGCA.GT
Volvox	(green alga)	TC.TACACGT.GTAC
Conocephalum	(liverwort)	TC
Bazzania	(moss)	T
Anthoceros	(hornwort)	T
Osmunda	(fern)	TCGCCTG.GCGTGACAA.GC
Lycopodium	(club "moss")	.GGC.TC.TCTGCACTC.GAAA.GT
Ginkgo	(gymnosperm; Ginkgo biloba)	
Picea	(gymnosperm; spruce)	
Iris	(flowering plant)	
Asplenium	(fern; spleenwort)	TCC.GTCCCACGCCTCGATCGA.GC
Nicotiana	(flowering plant; tobacco)	GAGTCCCGGTAGACAT

All four bases are observed at some sites...

...while at other sites, only one base is observed

Copyright © 2007 Paul O. Lewis

Question: Why is rate heterogeneity ubiquituous?

Answer: Differences in mutational rates and (mainly) selective constraint

- Many sites are under purifying (stabilizing) selection:
 - Any mutation results in a different amino acid, AND
 - A amino acid replacement at the site results in dramatically worse functioning of the protein.
 - These sites will show *low* rates of evolution on a tree.
- Other sites are less constrained.
 - A mutation results in the same amino acid, OR
 - Many amino acids will work equally well at that position in the protein.
 - These sites will show *high* rates of evolution on a tree.

Rate heterogeneity in protein-coding genes: terms

- **Synonymous** mutations result in the same amino acid.
- Non-synonymous mutations result in the different amino acid.
- **Conservative** changes are non-synonymous changes that result in a chemically similar amino acid.
- **Neutral** mutations result in a new genotype that has the same fitness as the genotypes currently fixed in the population.

Rate heterogeneity in protein-coding genes: generalities

- Synonymous changes are often neutral (or close to neutral),
- Third base positions and untranslated regions (introns and other non-coding regions) tend to have high rates because changes to these sites lead to synonymous changes.
- Transitions tend to lead to more synonymous or conservative changes.
- Amino acid residues that are embedded, involved in salt bonding, or part of the active site tend to be more constrained.
- Loops of amino acid residues on the outside of proteins often tolerate a wide range of substitutions (or even indels).

Site-specific rates

- You decide there are 3 classes of sites:
 - 1st positions evolve at relative rate r_1
 - 2nd positions evolve at relative rate r_2
 - 3rd positions evolve at relative rate r_3
- r_1 , r_2 and r_3 are *relative* rates, not *actual* rates:
 - their average is 1.0: if each category has the same number of sites, $(r_1 + r_2 + r_3)/3 = 1.0$
 - the actual rates are $r_1 \alpha$ (for 1st positions), $r_2 \alpha$ (for 2nd positions) and $r_3 \alpha$ (for 3rd positions)
 - note that the average substitution rate over all sites is α $(r_1 \alpha + r_2 \alpha + r_3 \alpha)/3 = \alpha (1.0) = \alpha$
- Assuming *k* rate classes adds *k*-1 parameters to the model

Copyright © 2007 Paul O. Lewis

Transition probabilities under the JC69 model

with no rate heterogeneity:

$$\Pr(i \to i | \nu) = \frac{1}{4} + \frac{3}{4} e^{\frac{-4\nu}{3}}$$
$$\Pr(i \to j | \nu) = \frac{1}{4} - \frac{1}{4} e^{\frac{-4\nu}{3}}$$

First base positions under a *site-specific rates* model:

$$\Pr(i \to i | \nu) = \frac{1}{4} + \frac{3}{4} e^{\frac{-4r_1\nu}{3}}$$
$$\Pr(i \to j | \nu) = \frac{1}{4} - \frac{1}{4} e^{\frac{-4r_1\nu}{3}}$$

Site-specific rates in PAUP*

First, define a character partition that puts each site into one of several mutually exclusive categories (the category names are arbitrary):

```
charpartition codons = one:1-.3, two:2-.3, three:3-.3;
```

Then tell PAUP* that you want site specific rates and provide the partition you defined previously:

lset rates=sitespec siterates=partition:codons;

Pinvar approach

- Unlike the site-specific rates approach, this approach does not require you to assign sites to rate categories
- Assumes there are only two classes of sites:
 - invariable sites (evolve at relative rate 0)
 - variable sites (evolves at relative rate *r*)
- Remarks:
 - mean of relative rates = $(p_{invar})(0) + (1-p_{invar})(r) = 1$
 - this means that $r = 1/(1-p_{invar})$
 - if all sites are variable, $p_{invar} = 0$ and r = 1