SATé demo 2012
Contents

1 SATé Lab 3

1.1 Version and Author information L oL 3

2 Background Information 3

2.1 Limitations of SATE e 3

2.2 Basic algorithmic structure L 4

3 Tutorial 5

3.1 Imstallation o . e 5

3.2 Simple test Tun L e 6

3.21 Imput files e 7

3.2.2 Output files locations e 8

3.2.3 Running SATE o e 8

3.2.4 A comment on starting trees Lo 9

3.3 SuiteMSA demo e 9

3.4 SATé on a protein sequence dataset 10

3.5 Using Mesquite with SATé output 11

4 Command-line version of SATé 13

4.1 Simple Command-line invocation 13

4.2 Understanding Configuration Files o oL 14

4.3 Using SATé Help o o 15

4.4 Advanced Command-line specific options L oL 16

5 GARLI-2.0 17

6 SATé Miscellany 17

6.1 Converting SATé output to NEXUS for GARLI or MrBayes 17

6.2 Multimarker analyses in SATé L 17

6.3 Postprocessing with RAXML 18

6.4 SATétemp files e 19

7 Quick version of the tutorial 20

8 SATé tool invocations 22

8.1 Aligners 22

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 1

SATé demo 2012

8.2 Mergers e e 22
8.3 Tree estimators L L 22
9 Additional Information/Resources 23

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 2

SATé demo 2012

1 SATé Lab

The goal of this tutorial is to help you become familiar with running SATé and interpreting its output.
You can download the tutorial content from http://phylo.bio.ku.edu/software/sate when you get home and
finish it there. So there is no need to rush through the tutorial. The stylistic conventions for this tutorial:
Names of files in this font.
Web site URLs and other clickable links look like this.
Nested menu items or graphical elements in a hierar- “Top Name”»“Mid Name”»“Lowest”
chical display

1.1 Version and Author information

This tutorial was written for SATé version 2.2.3. If you are using a previous versions of SATé, please upgrade.

That version of SATé was written primarily by Dr. Jiaye Yu. Contributions were also made Mark Holder,
Jeet Sukumaran, Siavash Mirarab, and Jamie Oaks.

This tutorial was written by Mark Holder, Tandy Warnow, Siavash Mirarab, and Jamie Oaks.

2 Background Information

SATé stands for “Simultaneous Alignment and Tree Estimation", and is pronounced “Sah-tay". SATé iter-
atively estimates multiple sequence alignments and phylogenetic trees. In each iteration it re-estimates an
alignment using the previous iteration’s tree, and then computes a tree on the new alignment using maximum
likelihood methods. The iterations continue until a user-provided stopping rule is triggered.

SATé’s re-alignment technique uses a divide-and-conquer approach. The set of sequences is divided into
subsets, each subset is re-aligned, and then the alignments are merged together into an alignment on the full
set of sequences. The division into small sequence datasets makes it possible to use high quality alignment
methods to align each subset, including those methods that cannot run on very large datasets (due either to
running time or memory requirements). For example, the most accurate version of MAFFT (Katoh et al.,
2005) is the L-ins-i command, but this command is computationally too intensive to use on datasets with
more than a few hundred sequences. SATé’s default decomposition strategy creates subsets of at most 200
sequences, then aligns each of these subsets using this MAFFT command, and then merges these smaller
alignments together using Muscle (Edgar, 2004) or Opal (Wheeler and Kececioglu, 2007). This means that
very large datasets, with more than a few hundred sequences, can be analyzed in this hybrid manner, rather
than using less accurate versions of MAFFT or needing to use less accurate alignment methods altogether.

Our studies show that iterative divide-and-conquer technique improves alignment estimation (and hence tree
estimation) on large datasets containing several hundred to many thousands of sequences, as compared to
the usual “two-phase" techniques of first aligning the sequences and then estimating the tree. More generally,
SATé can be seen as a method for boosting the accuracy of multiple sequence alignment methods. Thus,
when SATé uses MAFFT to align the subsets, it is boosting MAFFT; however, SATé can be used with other
alignment methods as well.

2.1 Limitations of SATé

SATé has been designed for use on large nucleotide sequence datasets, and specifically for large datasets that
are difficult to align accurately using standard methods due to high rates of evolution (indels and substitu-
tions). For such datasets, SAT¢ has been shown to produce improved alignments and phylogenies, and to
do so reasonably quickly. However, we know much less about the accuracy or computational requirements

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 3

http://phylo.bio.ku.edu/software/sate
http://www.google.com

SATé demo 2012

of SATé when analyzing other types of datasets.

e Small datasets. SATé is not designed to improve accuracy of alignments and trees (as compared
to RAXML on MAFFT alignments) when the number of sequences is small, containing at most 200
sequences. Experimental analyses of such datasets show that it generally matches the accuracy of
the best two-phase methods, and sometimes gives improved results, but may not give substantial
improvements. However, SATé can be used to quickly generate alternative alignments and trees for
datasets of this size, and so may serve a different purpose: the exploration of variability within estimated
alignments and trees.

o Very large datasets. The largest dataset that SATé has analyzed is the almost 28,000 sequence dataset,
16S.B.ALL, from Gutell’s Comparative Ribosomal Website (CRW) database (Cannone et al., 2002).
On this dataset, SAT¢é produced alignments and trees with greater accuracy than standard two-phase
methods, and did so reasonably quickly (Liu et al., 2012). However, we have not tested SATé on
datasets that are larger than this, and so do not have any information about how it performs when the
number of taxa is very large. It is likely that modifications to the algorithmic parameter settings will
be needed (or valuable) for very large datasets, since the default parameters have been set for large
but not wltralarge datasets.

o Amino-acid datasets. SATé has been extensively tested on nucleotide datasets, and the defaults are
set for this type of data. Thus, while SATé has been used on amino-acid datasets, its performance
on amino-acid datasets is less well studied than on nucleotide datasets. It is possible that algorithmic
parameters should be reset for this kind of data.

e Datasets with fragmentary (rather than full-length) sequences. SATé is designed for analysis of full-
length sequences. Therefore, we do not know whether SATé can perform analyses of datasets that
contain many short fragments (e.g., reads from shotgun sequencing analyses). You may wish to consider
the use of methods that perform phylogenetic placement for such datasets; see Mirarab et al. (2012);
Matsen et al. (2010); Berger et al. (2011). Multi-locus datasets. SATé can be run on multi-locus
datasets, but it uses a single tree to guide the decomposition. The behavior of the algorithm and the
software in the multi-locus context have not been carefully studied.

2.2 Basic algorithmic structure

Whether using the GUI or the command-line version, to understand the default settings (or to modify these
settings), you need to understand SATé’s basic algorithmic design. We describe SATé in its simplest form,
where the input is a set .S of sequences for a single marker, and the output is a single tree and alignment on
S. If the user provides an initial alignment or tree for the dataset, then the first step can be eliminated, and
the algorithm begins in Step 2. We indicate the algorithmic parameters that can be reset by the user using
boldface, and give information about the default settings for these parameters.

The default settings for SATé differ based upon the dataset properties, including the number of taxa, the
type of data (nucleotide or amino-acid), and the number of sites. Therefore, using SATé for single marker
analysis is straightforward if the default settings are used. It is, however, easy to modify the default settings,
as described below.

The steps of a SATé analysis

1. If the user has not provided a tree or an alignment for the dataset, then SATé computes such a tree
and alignment. (The default technique uses MAFFT (Katoh et al., 2005) to produce the alignment
and FastTree (Price et al., 2010) to produce the tree; this technique can be modified by the user.)

2. This step is repeated until the stopping rule (or “stop rule") applies. By default, the stopping rule
is that the maximum likelihood score gets worse.

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 4

SATé demo 2012

(a)

Divide the taxon set into smaller subsets. This division into subsets is controlled by several
algorithmic parameters, including the maximum number of sequences per dataset (max. sub-
problem) and the decomposition edge.

The maximum subproblem size can either be expressed as a percentage of the number of sequences
in the full set (“percentage”) or by the number of permitted sequences (“size”). Each of these is
given by an integer, with percentage ranging from 1-50 and size ranging from 1-200. By default,
the maximum is set to min{200,n/2}, where n is the number of sequences in the full set. Thus,
for all datasets, the subsets produced using the default decomposition have at most 200 sequences.
There are two ways you can set the decomposition edge: either a longest edge or a centroid edge.
A longest edge is one with the largest maximum likelihood branch length, and a centroid edge is
an edge which splits the taxon set roughly into two equal sized sets.

These defaults will be set automatically by SATé when it parses your input, or can be reset by
the user.

Produce alignments on each subset, using the subset Aligner method. The default setting in
SATé uses MAFFT, with its L-INS-i command for subsets of at most 200 sequences, and then
the default setting for MAFFT on larger subsets. Thus, on larger datasets, MAFFT will select
the command that it prefers for datasets of that size.

Merge these subset alignments into an alignment on the full set of taxa, using the alignment
Merger method. The default is Opal, but the user can select Muscle as an alternative strategy.

Estimate a new tree on the new alignment using the selected Tree Estimator technique, and
under the selected site evolution Model. By default, the Tree Estimator technique is FastTree,
and the alternative strategy is RAxML, both of which are maximum likelihood methods. The
default models depend upon the type of data: nucleotide or protein.

3 Tutorial

Step 1: Make a copy of the data that you are planning to use in the tutorial. Always have a backup of
data that you are working with!

Step 2: Join the SATé user’s group. This implementation of SATé has not been the subject of intensive
testing. So, please check your results carefully and notify us of any apparent bugs. The SATé User Group
is a low-traffic email group. We try to respond to bug reports quickly, and announcements of bugs and new
versions of SATé go to that list.

3.1 Installation

Step 3: Go to http://phylo.bio.ku.edu/software/sate and download the most recent version of SATé for
your computer’s platform. Depending on the platform, the installation procedures are slightly different:

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 5

http://groups.google.com/group/sate-user?hl=en
http://phylo.bio.ku.edu/software/sate

SATé demo 2012

Mac 1. Create a folder on your Desktop called sate
2. Download the .dmg file (the dmg file will have the version number and date that it
was posted in its name).
3. Double click it to mount the disk image (the image will load as a disk named SATe).
4. Copy the contents of the mounted disk image to the Desktop/sate directory that you
created
5. Eject the SATe disk image
You cannot run the SATe application when it is still located on the disk image!
Windows 1. Download the .zip file.
2. Right click on .zip file and select Extract All...
3. Select your Desktop as the destination for the extracted files.
4. Change the name of the new Desktop\satewin-v.X.X.X-YYYYMMDD directory to Desk-
top\sate.
*nix

1. If you do not already have Python, install Python (version 2.7, 2.6, or 2.5).
2. Install pip. You can download pip-1.1.tar.gz from http://pypi.python.org/pypi/
pip#downloads. Unpack the $ pip-1.1.tar.gz file; cd into the directory, and run
$ python setup.py install
3. In a terminal, run the command
$ pip install DendroPy.
4. Download the most recent version of the SATé source code from here.
5. Move downloaded tar ball to the directory of your choice, navigate to that directory
in terminal, and extract the files via:
$ tar xvzf satesrc-vX.X.X-YYYYMMDD.tar.gz
cd into the extracted satesrc-vX. X.X-YYYYMMDD directory.
7. Install SATé via:
$ python setup.py develop
If this fails due to a permission error, try:
$ sudo python setup.py develop
If you use sudo you will be prompted to enter your user-account password.
8. You can then run SATé from the command-line using;:
$ python run_sate.py
9. If you want to run the SATé GUI, you need to install wxPython.
10. After wxPython is installed, you launch the GUI with the command:
$ python run_sate_gui.py

&

3.2 Simple test run

Step 4: Now, we can launch the SATé GUI and take a look at the interface. Launching SATé varies slightly
depending upon the platform:

Mac Double-click the SATé application’s icon located in Desktop/sate/ (you may be given a warning
indicating that the file was downloaded from the internet).

Windows Double-click the Desktop/sate/run sate gui.exe file (the .exe may be hidden, and you may be
given a warning indicating that the file was downloaded from the internet).

*nix If wxPython is installed, open a command-line shell, navigate to your SATé directory, and use:

$ python run_sate_gui.py

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 6

http://www.python.org/
http://pypi.python.org/pypi/pip#downloads
http://pypi.python.org/pypi/pip#downloads
http://phylo.bio.ku.edu/software/sate/downloads2/
http://www.wxpython.org/
http://www.wxpython.org/
http://www.wxpython.org/

SATé demo 2012

“GUI" stands for “graphical user interface”, and this is the typical style of point-and-click application that
most of us are accustomed to. SATé, like most scientific software, is written using a command-line interface
(CLI). The GUI version of SAT¢é simply translates the options that you select into a set of commands for
the command-line version of SATé, then runs the command-line version and shows you its output. We will
discuss the command-line interface later, but it is easier to get a sense of the options when working with the
GUL

The GUI is divided into five sections:

“External Tools” | Allows you to select the tool that will align the subproblems, merge the
alignments of the subproblems, and estimate trees from the concatenated
alignment.
“Sequences and Tree” | This section used to specify your input data.

“Workflow Settings” | Controls some behaviors that are not related to the SATé algorithm.

“Job Settings” | Allows you to specify file tags for the output, and tweak settings that are

related to your computer (rather than the SATé algorithm).
“SATe Settings” | Allows you to configure the details of the SATé algorithm - how the tree is
decomposed, how to stop the run, and what tree should be returned.

3.2.1 Input files

Step 5: For the first exercise, we’ll play with a tiny data set just so you can see how different settings affect
the output of SATé.

Open the Desktop/sate/data/anolis.fasta file in a text editor to make sure that you are familiar with the
FASTA file format that SATé uses.

As with almost all bioinformatics software, you should not use a word-processor (such as Microsoft Word)
to edit input files unless you are very careful to save the files as plain text format. On Mac, TextWrangler
is a good free text editor. On Windows, Notepad++ works fine. Notepad will work for most interactions
with SATé, but the SATé configuration files are written in binary mode. If you open and edit these files in
Notepad, you will not see the line breaks correctly. jEdit is a free option that runs on machines that have
Java. There is no need to edit the sequences for this demo, but you should feel free to do so.

Step 6: Select a test input file. Click on the “Sequences and Tree”»“Sequence file” button, and
navigate to the Desktop/sate/data directory. Select the anolis.fasta file.

When you are navigating the filesystem, SATé will default to filtering the files so that you can only select
filenames that end in the .fasta extension. When browsing for files, you can disable this filtering based
on file name by selecting “FASTA files (*)” in the “Enable” menu of the file browser. This will allow any
file extension to be selected. Note that the file must still conform to the FASTA format, regardless of its
extension.

Step 7: After selecting anolis.fasta, click on the “Open” button. You should then see an alert window
asking you if you’d like SATé to read the input now. Click “OK” in response to the “Read input now?” query.
At this point, you should see text appear in the output log section. The summary reports basic information
about the data set that was read.

In general you should always click “OK” in response to the query about reading the input data. If you choose
“Cancel” option, then SATé will not look at your data until you click “Start.” If you have a large dataset,
avoiding the reading of the file is slightly faster, but it makes it impossible for the SATé GUI to suggest
default settings.

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 7

http://en.wikipedia.org/wiki/FASTA_format
http://www.barebones.com/products/TextWrangler/
http://notepad-plus-plus.org/
http://www.jedit.org/

SATé demo 2012

3.2.2 Output files locations

Step 8: Note that when you select an input sequence file, SATé changes the default location for the output
to be the same directory. You can leave this unchanged, but it makes it easier to organize your output if
you create a new directory.

Click on the “Job Settings”’»“Output Dir.” button and use the file browsing window to create and
select directory on the Desktop called sateoutput (or any other name without strange characters, spaces, or
punctuation).

In the “Job Settings’»“Job Name” edit box, change the word from satejob to defaultanolis for this example.
This job name will be the prefix for the output of this run of SATé.

3.2.3 Running SATé

Step 9: Click the “Start” button to begin a run. When you do this the GUI for SATé composes
appropriate commands for the command-line version of SATé and launches it. You should then see messages
from the running SATé process appear in the log window. Messages that start with “SATé INFO:” are
normal status reports. Errors and warnings will have distinct prefixes. This is a tiny data set (in fact it is
much too small to represent a reasonable “use-case” for SAT¢), so it should complete quickly.

Make sure that you understand the logged output (we’ll look carefully at the output files that are produced
by SATé later in the exercise, but you can ignore them for now). Because all of the sequences have the
same length, SATé can kickoff the algorithm by searching for a tree on the initial alignment. Let’s see what
happens if we tell SAT¢ to disregard the initial alignment.

We appear to be experiencing some issues with the Windows version not updating the log window. You may
have to click on the scroll bar to force it to refresh.

Step 10: Make sure that the previous SATé has run completed (you should see a message about that starts
with “Note that temporary files...” when the run completes). Uncheck the box in “Initial alignment: Use
for initial tree” box, and Click the “Start” button again.

If you compare the initial output of the two runs you should see a difference. The first run should have
generated log-output that says:

SATe INFO: Creating a starting tree for the SATe algorithm...
SATe INFO: Input sequences assumed to be aligned (based on sequence lengths).
SATe INFO: Step O. Realigning with decomposition strategy set to centroid

In the second run, we asked SATé to disregard the initial alignment, so we should see:

SATe INFO: Creating a starting tree for the SATe algorithm...
SATe INFO: Performing initial alignment of the entire data matrix...
SATe INFO: Step 0. Realigning with decomposition strategy set to centroid

If we have a starting tree, then we can completely skip the initial tree searching step.

Step 11: After the SATé run has completed, try using a starting tree for a SATé run. To do this you
should click on the “Tree file (optional)” button and use the resulting file browser to select Desk-
top/sate/data/anolis.tre. Note that, by default, the file browser only lets you select files that end in .tre, but
you can change this filtering using the “Enable” drop-down menu.

Click “Start” again. You should now see log output that includes text like this:

SATe INFO: Starting SATe algorithm on initial tree...
SATe INFO: Step 0. Realigning with decomposition strategy set to centroid

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 8

SATé demo 2012

3.2.4 A comment on starting trees

Note that the first iteration of SATé algorithm (decomposition of the tree, alignment of the subproblems,
merging alignments, and tree estimation) does not commence until the initial tree is obtained. This point is
marked by the “SATe INFO: Step 0”7 lines in the output. Before you get to the “real SATé” algorithm, the
software has to decide whether it will:

e perform multiple sequence alignment + tree estimation (if you provide unaligned sequences only),
e perform tree estimation (if you provide an initial alignment only), or
e advance directly to the SATé algorithm (if you provide a starting tree).

For this tiny dataset, the amount of time required to build a starting tree is trivial. For a large alignment,
computing the initial alignment can require lots of memory and can take as much time as multiple iterations
of SATé. So, providing a starting tree can really speed up your analysis.

One quick way to produce a starting tree is to run PartTree (Katoh and Toh, 2006) to produce a quick
alignment, and then using FastTree (Price et al., 2010) to get a quick estimate of the tree. From a terminal
running the a *nix shell this could be done with:

mafft -retree 1 -parttree anolis.fasta > parttreealign.fasta

fasttree parttreealign.fasta > quick.tre

to produces an initial alignment called parttreealign.fasta and a tree called quick.tre. We will have some
discussion about working from a terminal later, so you do not need to try these steps now.

Step 12: At this point we have conducted three different runs of SAT¢é, but we still have not looked at any
of the output!

In each of the three runs that we just performed, we told the software to use the same output directory and
the same “Job name.” SATé produces quite a few output files, and it uses the job name as the prefix for all
of these files. SAT¢é will add a number to the “job name” if it appears that there is already output from SATé
in that directory with the job name that you have chosen. This is done to avoid unintentionally over-writing
output from previous runs. Thus, the prefix for any run is the job name specified by the user, possibly with
a number added to make it unique. Table 1 explains the output that you will see from a typical SATé run.
You can open any one of these files in a text editor to verify that you understand what they contain.

Step 13: Andrew Rambaut’s FigTree (available from http://tree.bio.ed.ac.uk/software/figtree/) is probably
the easiest tool available for visualizing Newick trees. If you have Java installed, you should be able to
download and run FigTree. Using the “File”»“Open” menu selection in FigTree should allow you to open one
of the tree files from SATé. Note that if you open one of the temp tree files, the names will correspond
to the internal “safe” names used by SATé.

We will discuss how you can use Mesquite to compare trees from different iterations later.

If you open a temporary tree file from a run of SATé using FastTree, FigTree may ask you what the internal
node names mean. If you ask FigTree to display these numbers, they will correspond to the “local support”
measures described on the http://meta.microbesonline.org/fasttree/#Support webpage (feel free to ask us
about interpretation of these).

3.3 SuiteMSA demo

You can download SuiteMSA v1.3.1 (Anderson et al., 2011) from http://bioinfolab.unl.edu/~canderson/SuiteMSA /
Dr. Etsuko Moriyama will give an introduction to how to use SuiteMSA to compare alignments. You can
try it out on the alignments of the Anolis data.

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 9

http://tree.bio.ed.ac.uk/software/figtree/
http://meta.microbesonline.org/fasttree/#Support
http://bioinfolab.unl.edu/~canderson/SuiteMSA/

SATé demo

2012

Table 1: SAT¢é output files

Primary output files

jobname.tre

The resulting SATé tree in Newick (also know as “PHYLIP”)

format

jobname.marker###. inputprefix.aln

The resulting SATé alignment for the locus number shown
after “marker” that corresponds to the input file with the pre-
fix shown. For the runs on anolis.fasta, there was only one
marker and the prefix is anolis; thus there should be a file
called defaultanolis.marker001.anolis.aln.

jobname.score.txt

The In-likelihood of the final tree+alignment pair.

jobname.out.txt

The informational messages that SATé command prints out
as it ran (this file should contain the same messages that the
GUI displayed).

jobname.err.txt

This file should be empty. However, if SATé exits with an
error, it will contain the error messages.

“Extra” output files

jobname temp sate config.txt

This is a complete configuration file that should be sufficient
to cause a command-line version of SAT¢ to rerun the analysis.

jobname temp name_translation.txt

The other “temp” files will contain alignments and trees, but
the sequence names will be modified to make them less likely
to cause problems for the external tools used by SATé. This
file contains a translation of names in the format: “safe name”
on one line, “original name” on the next, and then a blank
line.

jobname temp iteration # tree.txt

The tree (in Newick format) found in the search for the SATé
iteration # shown (steps start at 0). This file uses the
internal, “safe” for the sequences names!

jobname temp iteration # seq alignment.txt

The sequence alignment (if FASTA format) used in the tree
search for the SATé iteration # shown (steps start at 0). This
file uses the internal, “safe” for the sequences names!

jobname. *initialsearch.*

If you do not provide SAT¢é with an initial tree, then there will
be temp files for “iterations” that correspond to the alignment
and search to find the starting tree

3.4 SATé on a protein sequence dataset

Step 14: Download the zipped archive of files from

http://phylo.bio.ku.edu/software/sate/tutorial.zip and copy the contents into the Desktop/sate/data
directory.

Step 15: The previous Anolis dataset has very few sequences, but the SATé algorithm was designed to
work with sequences for a large number of species. In the next few steps, we will use a dataset that better
represents a typical SATé “use-case”.

Launch SATé again, and read either the data file:

Desktop/sate/data/BBAQ0067.input.fasta or

Desktop/sate/data/BBA0067-half.input.fasta.

These are datafiles of amino acid sequences. The former has 410 sequences, and can take about 30-45 minutes
to run (depending on your computer). This is a file from the BAIiIBASE database of benchmark alignments.
The latter is simply the first 205 sequences of the BBA0067.input.fasta file; it is more appropriate if you are

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 10

http://phylo.bio.ku.edu/software/sate/tutorial.zip
http://www-bio3d-igbmc.u-strasbg.fr/balibase/

SATé demo 2012

in a hurry. After SATé parses the file, you should see a message that indicates that the file contains “410
sequences with longest length = 691.”

Step 16: Because the dataset has a fairly large number of leaves, the initial alignment of all of the sequences
can be slow. Recall that we can avoid this step if we provide a starting tree. If you click on the “Tree file
(optional)” button, you’ll be able to select the Desktop/sate/data/BBAOQ067.startingtree.tre as the starting
tree (or BBAOO67-half.startingtree.tre if you are running the smaller dataset). This tree was obtained by
running PartTree to get a quick alignment, and then using FastTree.

Step 17: Take a look at the “SATe Settings” section of the GUI, and make sure that you understand what
each element of the interface controls. The common options are described in Table 2, but please feel free to
ask us about any questions that you may have.

Because this run will probably take several minutes, you may want to coordinate separate runs with people
sitting near you. You can each run a different group of settings and compare the trees, alignments, or
likelihood scores after the run. If you would like to skip this step, you can find the output from runs using
the default settings in the sample-output folder.

3.5 Using Mesquite with SATé output

Step 18: Depending on the amount of memory you have on your machine, the alignments from the BBA0067
run may be too large for SuiteMSA. You can use the “Pixel plot” visualization of SuiteMSA to look at large
alignments.

You can download Mesquite from http://mesquiteproject.org/mesquite/download/download.html as
a means of browsing alignments, looking at trees and comparing them, and performing a huge number of
other phylogenetic operations. Covering the features of Mesquite is well beyond the scope of this tutorial, but
there is a nice manual on http://mesquiteproject.org/Mesquite_Folder/docs/mesquite/manual .html.

Here we’ll cover opening the SATé output and comparing trees from the iterations of SATé. Launch Mesquite
and use the “File”»“Open File...” to select the satejob.marker001.BBA0067.input.aln file that was the result
of running SATé. Mesquite should show you the contents of the file, and ask you what the format of the
file is. Select “FASTA (protein)” from the options shown in the “Translate File” window. Mesquite uses the
NEXUS format as its internal storage, so it will immediately prompt you for a file path of where it should
store the NEXUS version of the output (choose any name that you like for the file).

From the “Project” view of the file, you can click on the “Character Matrix”»“Show Matrix” link to look at
the alignment. The “Bird’s eye view” (bird head icon at the bottom of the matrix) provides a very compact
view of the alignment. As with many datasets in BAIIBASE, this is a very divergent set of sequences.

Using the “Taxa&Trees”»“Import File with Trees”»“Include Contents...” to import the satejob.tre tree file
produced by your analysis. When prompted to enter the file type, in the “Translate File” window, tell
Mesquite that the file is of type “Phylip (trees).”

If you would like to see which groups are showing up repeatedly through several iterations of the SATé
algorithm, you can create a majority-rule consensus tree of the trees from each iteration (note the group
frequencies on this tree will not be measures of statistical support). First, you'll need to use the “Import
Files with Trees” procedure on each of the trees from the iteration satejob temp iteration 0 tree.tre being
the tree at the end of the first iteration. As you import each tree it should show up as an “Imported trees”
item listed in the Project View. To avoid confusion, you should rename each group of trees. Click on the
word “Imported trees” and choose “Rename Trees Block” from the menu that appears. You can assign any
name that makes sense to you as the name for the block.

Next we’ll need to a single Trees Block that has all of these trees in it (because Mesquite’s consen-
sus operation summarizes trees within the same block). Use the “Taxa&Trees”’»“Make New Trees Block
From”»*“Concatenate Multiple Tree Sources...” option. You will leave the selector on the “Stored Trees”

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 11

http://mesquiteproject.org/mesquite/download/download.html
http://mesquiteproject.org/Mesquite_Folder/docs/mesquite/manual.html

SATé demo 2012

Table 2: Common SATé settings

Quick Set | Allows you to choose one of the “preset” collection of run set-
tings. This menu will say “(Custom)” if you have tweaked the
settings away from one of the “presets.”

Max. Subproblem | This section allows you to control the cutoff for when SATé
stops decomposing the tree (via bisection), and asks the
“aligner” tool to align the sequences in a subset. You can
specify the maximum size of any dataset given to the aligner,
expressed either as the number of sequences (“Size”) or a “Per-
centage” of the full dataset size.

Decomposition | SATé uses a tree-directed method of breaking the sequences
into smaller sets: it chooses a branch (either the “longest" or
the “centroid" branch), and bisects the tree at that branch,
thus producing two sets of sequences. Branch lengths are es-
timated using ML, and the “centroid” branch divides the tree
roughly into two equal sized subtrees. In the SATé-II paper,
the “longest” method was used but the default decomposition
in the software is “centroid”

Blind Mode Enabled | Keep this box checked. Blind mode means that the tree and
alignment pair will be accepted even if the score does not
improve. Unchecking the box increases the chances of being
stuck in local optima, because the tree with the best ML score
will be retained as the “current tree".

Apply Stopping Rule | Controls whether the run is terminated based on a stopping
rule that counts from the first step, or from the last time that
the tree score improved.

Stopping Rule (time or iteration) | This lets you control whether SAT¢é stops the run based on the
number of iterations or on time (in hours) since the “Apply
Stopping Rule” is triggered. Note that the number of itera-
tions counts the iteration just completed. So if you tell it to
stop with an iteration limit of 1 after the last improvement,
SATé will exit after the first iteration in which the score does
not increase.

Return | Determines whether SATé saves the final tree it has decom-
posed or the tree associated with the best score.

option and click “OK” once for each tree that you want to summarize (once for each iteration of SATé). Hit
“Cancel” when you have chosen “Stored Trees” the correct number of times. Then you’ll be presented with
a list of stored tree sources — you should see the names that you specified for the imported trees. Choose
the tree from iteration 0 and then hit “OK.” You’ll be asked about the source for the next tree; indicate the
tree from iteration 1. Repeat this process until you have chosen all of the tree sources.

The Trees block that contains all of the trees from each iteration will be named “Concatenate Multiple Tree
Sources.” To produce a consensus tree use the “Taxa&Trees’»*Make New Trees Block From”»“Consensus
Tree” menu item. Choose “Stored Trees” as the source and then “Majority Rules Consensus.” Click “OK”
to the consensus options, and “No” to the offer to run the operation in a separate thread. Choose the
“Concatenate Multiple Tree Sources” trees block. You will then be asked if you’d like to view the trees
(say yes). To see the frequency associated with a group, use the “Tree”’»“Node-Associated Values”»*“Choose
Values To Show...” menu item. Click the “consensusFrequency” box and hit “OK.”

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 12

SATé demo 2012

4 Command-line version of SATé

Step 19: As mentioned before, SATé is a command-line application wrapped by a GUIL. Some users prefer
the comfort of a GUI, but others find command-line invocation more productive. Moreover, command-line
execution is the only option in many situations. If the user needs to run a program for a large number
of inputs (say for hundreds of genes), using GUI is typically not feasible. Also, running applications on
computing clusters, and on super-computers is possible only through command-line invocation. The SATé
command-line interface gives users more flexibility and enables specific parameter settings that cannot be
set using the GUI (more on this later).

For command-line invocation you first need to start a terminal. On Mac, this is the /Applications/Utilities/ Terminal
application. On Windows, the DOS prompt (C:\WINDOWS\system32\CMD.exe) is the most widely used
terminal.

In the terminal, navigate to your SATé directory. You can do this with a change directory:
cd Desktop/sate

on Mac and *nix and:

cd Desktop\sate

on Windows. You can see the contents of your current directory (to double check that your c¢d command
worked), by using:

1s

on Mac and *nix and:
dir

on Windows.

You are now ready to start command-line invocation.

4.1 Simple Command-line invocation

Step 20: To run SATé on the input file anolis.fasta using the automatic parameter configuration, type the
following command if you are running Mac OS or *nix:
python run_sate.py --auto -i data/anolis.fasta

On Windows use:
run_sate.exe --auto -i data\anolis.fasta
and hit enter.

For the remaining steps in the command-line section, the commands will be given for Mac and *nix. On
Windows you will need to:

1. substitute run_sate.exe instead of python run_sate.py, and
2. use \rather than / in the file paths.

SATé starts running and produces output similar to what you have already seen with GUI executions.

In this command-line, the -i option is used to specify the input file. By using --auto option we allow
SATé to automatically choose its settings based on properties of the input fasta file. Without the --auto
option, SATé will run with fixed parameter settings that may not be optimal for your dataset. We have
chosen not to make automatic parameter setting the default (mostly to keep behavior compatibility across
different versions), but we strongly discourage the use of default options. Instead, we encourage either using

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 13

SATé demo 2012

the --auto option, or manually setting parameters (we will see how) for users who are more familiar with
the algorithmic designs of SATé.

Output files of command-line SATé are identical to the files generated by GUI. Names of output files are
printed on the console as the program is running. After SATé finishes running, you can examine the output
files and compare them with your command-line executions.

4.2 Understanding Configuration Files

Step 21: One of the files created by SAT¢ is its configuration (a.k.a. config or setting) file. In the informa-
tion printed on your terminal, look for a line that looks like this (you will have a different path):

SATe INFO: Configuration written to ".../data/satejob#_temp_sate_config.txt".

The configuration file is a human-readable text file that can be passed to SAT¢é as input (as we shall see in
next steps) to specify the desired options. If you do not see line breaks in the file, it may be an indication
that you are not using a good enough text editor (jEdit or Notepad++ for Windows). In addition, each
time you run SAT¢é, a configuration file associated with the settings used in the current run is saved as part
of SATé output. This configuration file has two purposes: you can go back and check the parameters that
were used in generating your results, and you can provide this information (if you choose) in a publication
using SATé.

Open the config file that SATé generated for you in a text editor. The config file is partitioned into different
sections, each consisting of one or more options, with the following format:

[section name]

option_name = value

another_option_name = value

Look at the configuration file, and see if you can see how these options relate to options you previously
saw on the GUIL. A good resource for understanding meanings of different options is SATé command-line
help, accessible through -h option, as we shall see in next steps.

We are going to use the config file from our previous run in later steps. Make a copy of the configuration
file onto favorite directory (we will use Desktop/sate in this tutorial) and name the new file sate config.txt.
For example, in *nix I use:

cp data/satejob2_temp_sate_config.txt ~/Desktop/sate/sate_config.txt

Step 22: SATé parameters can be specified in two alternative ways; they can be specified as command-line
options (such as --auto used in the previous run) and as entries in a config file. SATé can also take in
multiple config files. A SATé command-line execution has the following form:

python run_sate.py [options] [<settings_filel>] [<settings_file2>]

Configuration files (if provided) are read in the order they occur as arguments (with values in later files
replacing previously read values). Options specified in the command line are read last. Thus these values
take precedence over any settings from the configuration files.

Open Desktop/sate/sate config.txt in a text editor. We are going to change some settings in the configuration
file and rerun SATé with the new configuration file.

It is good practice to create a separate directory for each run of SATé. By default SATé outputs everything
to the directory where input file is located. To specify an output directory, add the following line under
section [sate]:

output_directory = sateout_cmd

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 14

SATé demo 2012

You could use a relative or a full path to specify the directory where you want the results to be stored.
If the directory does not exist, it will be created by SATé.

It is also wise to give each SATé run a meaningful job name. To set a job name in the configuration file,
look under section [commandline] for an attribute called job. By default, you should have job = satejob.
Change the name to something else, e.g. job = anolis.

One of the SATé configurations you can control from the commandline but not from the GUI is the treatment
of temporary directories. While SATé is running, it generates a bunch of temporary files. When SATé is
run from the commandline, by default it removes the temporary files. However, you may want to keep the
temp files for a variety of reasons. For example, if you are facing an error and are trying to debug the issue,
keeping the temporary files can help you find the source of the issue. Or, you might be interested in the log
files generated by the tree estimation tools (such as RAXML and FastTree), and these are stored in the temp
directories.

SATé has two parameters that impact the treatment of temp files, both under the [commandline] sec-
tion: keeptemps and keepalignmenttemps. Setting keeptemps to False results in removal of all temporary
files, while setting this option to True preserves temporary files generated in tree generation steps and also
some general temp files. keepalignmenttemps controls whether temporary files generated in the alignment
steps are kept. These two settings have been separated out because alignment steps generate many poten-
tially large files, and therefore it is often desirable to to remove them, while still keeping tree estimation
temporary files. In addition, you can control the location of temporary files by setting temporaries =
/a/path/on/your/disk/drive. In your text editor, modify keeptemps attribute and set it to True.

Step 23: From the terminal, run the following command:
python run_sate.py sate_config.txt

which runs SATé using the configuration file you just created. Wait for the execution to end. Note that
results are now saved in a new location. Also note that at the end of the SATé run, you get the following
message:

SATe INFO: Note that temporary files from the run have not been deleted, they can be found
in:

/some/path/on/your/machine

Examine the path given to see what temporary files are left behind.

4.3 Using SATé Help

Step 24: So far we have seen how the SATé settings can be changed. To see a list of all options available
in SATé and a description of what they do, issue the following command:

python run_sate.py -h

A list of all available options is printed on the terminal. Use scrolling to move up and done in the help
descriptions. You can also redirect the output to a text file if scrolling does not work well on your system:
python run_sate.py -h > satehelp.txt

Look quickly through SATé help options, and ask questions if the descriptions are not clear. Note that some
of these options, such as --timesfile and --start-tree-search-from-current, are not available on the

GUL

Step 25: As noted before, settings can be given to SATé in multiple configuration files, as well as comman-
dline options. We are now going to use the configuration file used previously for anolis.fasta to run SATé on
a different input file called pythonidae.fasta. Issue the following command:

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 15

SATé demo 2012

python run_sate.py -i data/pythonidae.fasta -j pythonidae -o sateout_pythonidae sate_config.txt

which will run SATé on pythonidae.fasta (-1 option), with job name set to pythonidae (-j), output saved
in a directory called sateout pythonidae (-0), and the rest of the parameters set identical to our previous
runs (because of the config file given at the end). Note that as mentioned before, commandline options
“overwrite” configuration file settings. This SATé run should finish in few minutes. While SAT¢ is running
open the configuration file generated for this run in a different window and examine its content. Note that
the value of input, output_directory, and job attributes are set to values provided in the commandline,
not those provided in the input sate config.txt file.

4.4 Advanced Command-line specific options

Step 26: Using the configuration file, we can modify what options are passed to tree estimation software
run inside SATé. For example, imagine you are analyzing a very large and gappy alignment and you are not
interested in local support values outputted by FastTree. You can speed up the FastTree step, by passing to
it options that make it faster. This can be achieved by changing a setting called args under the [FastTree]
section. For example, change the sate config.txt file to set the following:

[fasttree]

args = -pseudo -nosupport -fastest

These options will be passed to FastTree, without SATé interpreting their validity. These options tell Fast-
Tree that support values are not needed, that it should run in its fastest mode, and that it should use pseudo
counts (recommended by fasttree help for very gappy alignments.) Now run the following command:

python run_sate.py -o sateout_cmd_ftoptions sate_config.txt

which will run SATé again, this time giving it a different output directory, and passing those extra op-
tions to FastTree. Open the temporary tree file sateout cmd_ftoptions/anolis_temp iteration 0 _tree.tre
and compare it with sateout cmd/anolis_temp_iteration 0 tree.tre file we previously generated. Note that
the new file does not have local support values. This is due to the -nosupport argument passed to the
FastTree.

Step 27: SATé comes with bundled external software applications, such as RAxML, FastTree, Muscle, etc.
If you prefer to use a different version of some of these programs, it is possible to point SATé to installations
of external applications on your machine. There are two ways to change the location of programs used inside
SATé. The first option is creating a file located at [home directory/].sate/sate tool paths.cfg and adding
entries like this:

[raxml tree_estimator]

path = /the/path/to/your/own/raxml/installation

in that file. This is a global setting, meaning that it will affect all of your subsequent SATé runs, and this
new executable will be always used. You could also make a one-off change by setting the path option under,
say, [raxml] section in your configuration file used for a specific run. This will affect only runs that use that
configuration file as input. For the purpose of this tutorial, we are going to make a change to sate config.txt
file that we have been using. Open the config file in a text editor, and change the option path under [raxml]
section to the location of another installation of RAXxML on your machine. If you don’t have another RAxML
instance installed, simply set the path to some non-existing path. We also need to instruct SATé to use
RAxML (instead of FastTree) for tree estimation. You can achieve this by changing the tree_estimator
option under [sate] section and setting it to raxml. Run SATé from commandline and using this updated
config file. If you did not have RAxML installed on your machine and set the path to some incorrect path,
you should get the following error message:

SATe ERROR: SATe is exiting because of an error: ’/my/imaginary/path’ not found.

Please install ’raxml’ and/or configure its location correctly in ’ [HOME]/.sate/sate_tool_paths.cfg’

This conclude our session on commandline. Please explore different options and feel free to ask questions.

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 16

SATé demo 2012

5 GARLI-2.0

Following Derrick Zwickl’s presentation on GARLI-2.0, we’ll have an opportunity to work through some
examples of using the gap-coding procedure followed by the analysis using the DIM Model.

6 SATé Miscellany

The intent of the next section is to give you a chance to investigate some of the remaining SATé options. We
encourage you to use your own datasets for this portion of the exercise (if you have data that is appropriate
for SATé). If you did not bring an appropriate dataset, then the BBA0067-half.input dataset would be a
good example file to use.

6.1 Converting SATé output to NEXUS for GARLI or MrBayes

Step 28: The easiest way to use the output of SATé in software that requires NEXUS input is to follow the
general instructions given in Step 18 for reading a FASTA file into Mesquite.

This automatically generates a NEXUS file with the alignment. When you read in a non-NEXUS file,
Mesquite immediately prompts you for the name of an output file. This will be the NEXUS version of your
file.

If you are interested in using the latest (and greatest) version of MrBayes, which is available from here, then
you will need to modify the NEXUS output of Mesquite slightly. Specifically, you will need to open the
NEXUS file in a text editor and remove the two TITLE commands. The NEXUS file structure has blocks of
information. In the TAXA block, you should see a line that says

TITLE Taxa;

and in the CHARACTERS block should should find:

TITLE Character_Matrix;

If you remove each of these lines (make sure to get the semicolon), then MrBayes should be able to read
your file.

GARLI should read the NEXUS output of Mesquite whether or not you remove the TITLE command.

6.2 Multimarker analyses in SATé

Step 29: Running a multi-locus analysis in SATé is no more difficult than a single locus analysis. After
launching SATé, the only difference is that you have to click the “Multi-Locus Data” checkbox. Then you
can select the directory that contains your data files.

You should be aware of the following caveats:
e The behavior of SAT¢é (both the algorithm and the software implementation) in multi-locus mode is

much less thoroughly tested than the single-locus analyses. The multi-locus features are essentially in
alpha-testing mode.

e Every file ending in .fasta or .fas in the directory will be treated as an input for SATé. Each different
file will be treated as a separate locus.

e Sequence names in each FASTA file must match exactly (or SAT¢é will interpret the spelling variants
as representing distinct tips).

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 17

http://mrbayes.sourceforge.net/wiki/index.php/Introduction_3.2
http://sourceforge.net/projects/mrbayes/files/

SATé demo 2012

e The alignment and merger steps will be done separately for each locus. But the tree inference will infer
a single tree for all loci (though it will use a partitioned model in RAXML to allow different parameters
for each locus).

e A single tree will be used at each step as the basis of decomposition aspect of SATé.

e The output will use marker numbering based on the alphabetical order of the input files, but the input
file name will appear in the corresponding output file to make it easy to identify the source of the
sequences.

e If one of the sequences in your input file consists of all gaps, that sequence will not be omitted from
the final output.
Step 30: Try out a multi-locus analysis using the data/figwasps for the sequence input.

Note that the output log displays information about the number of sequences in each input file and the total
number of distinct sequences (150 for this set of files). This can help you be confident that SATé is matching
the same taxon’s sequence across files.

Specify the starting.tre file in that directory as the starting tree for the algorithm.
Run the analysis (you may want to tell SATé to use an iteration limit of 2 or 3 rather than 1).

Make sure that you understand the output of the multi-locus version (just ask us if you have questions).
Note that the temporary alignment files in a multi-locus version will contain a concatenation of both loci.

Step 31: Mesquite can produce a single NEXUS file from the multi-file FASTA output of SATé. The
procedure is:
1. Use Mesquite to convert each FASTA file to a separate NEXUS file (close each project before importing
the next FASTA file);
2. Open one of the converted NEXUS files;
3. Choose the “Taxa&Trees’»“Merge Taxa & Matrices from File...” menu item;
4

. Select the converted NEXUS file for the other marker;

5. Indicate that you want to Fuse the taxa blocks but keep the character matrices separate (“Add as new
Matrix” button);

6. Confirm the merging of taxa based on names;

7. Choose “Characters’s“Make New Matrix from”»“Concatenate Respective Matrices from Two Sources”
and then Choose “Stored trees” as the source of both matrices, and choose either matrix in answer to
the “Choose matrix to use as new stored matrix” prompt.

6.3 Postprocessing with RAxML

Step 32: Simulation studies indicate that running SATé with FastTree is very fast and only slightly reduces
the tree accuracy. If you decide to run SATé with FastTree, you may decide to include a final RAXxML run
on the output alignment in order to improve the tree estimation. Because this is a fairly common operation,
you can do this by simply checking the “Workflow Settings’»“Extra RAxML Search” checkbox in the SATé
GUL

Note that if you do a run under these conditions, you will see * temp iteration postraxtree tree.* files that
correspond to the final RAxML run.

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 18

SATé demo 2012

6.4 SATé temp files

Step 33: As you may have noticed, at the end of each SATé run, SATé displays a message that starts with:
SATe INFO: Note that temporary files from the run have not been deleted

Because it is sometimes helpful to see the “nitty-gritty” details of what has occurred in a SATé run, we do
not remove the files from your hard drive. Before you remove these files, you should be confident that they
are not being used. This will be the case if SATé has exited cleanly. But if you have experienced a crash,
you may need to use your operating system’s process managing system to make sure that one of the external
tools that SATé launches has not be left running.

On Mac you can launch /Applications/Utilities/Activity Monitor to see running processes. On Windows you
can use the Windows Task Manager to do this.

The external tools that SATé launches include pieces from mafft (disttbfast, dvtditr, pairlocalalign, tbfast),
clustalw2, fasttree, muscle, java running opal.jar, prank, raxml, and raxmlp.

When you are confident that SATé and the processes that it launched are not working with the temporary
files, you can open the directory.

On Mac (and *nix systems), file names that start with a dot are hidden. To open the directory on Mac, you
will need to launch /Applications/Utilities/Terminal (or open a new window in the terminal if you already
have it running) and then type:

open .sate

On Windows, you should be able to navigate into the home directory’s .sate directory as you would any
other directory.

Inside the .sate directory, you should see subdirectories that correspond to all of the “job names” that you
have run with SATé. Inside each of these, you will see a directory with a name that starts with temp and
ends with gibberish. This is the temporary directory used by SATé. Depending on the analyses you have
run you may see the following subdirectories:

init_aln | files for the initial alignment (if no tree or alignment was specified)
init_tree | files for the initial tree search (if no tree was specified)
step# | files for all parts of the corresponding iteration of SATé
post_tree | files used in the post-processing with RAXML (if you requested a final run
using RAxML).

In addition to getting rid of unneeded temporary files, it is good to know about the .sate directory to
find model specification files. For example, in a partitioned run you may want to conduct more anal-
yses (e.g. wuse different models) on the final tree. If you used RAxML as your tree estimator, job-
name_temp iteration # seq alignment.txt file in the SATé output will have a version of the sequences
in a form that RAXML can understand (see Table 1). By finding the partition.txt file in the appropriate
temporary directory, you can get the partition definitions that correspond to that RAxML input file.

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 19

http://en.wikipedia.org/wiki/Windows_Task_Manager

SATé demo 2012

7 Quick version of the tutorial

Step 1: Back up the data that you’ll be using.

Step 2: Join the SATé user’s group.

Step 3: Download and Install SATé.

Step 4: Launch SATé

Step 5: Examine Desktop/sate/data/anolis.fasta file in a text editor

Step 6: Click on the “Sequences and Tree’»“Sequence file” button and choose
Desktop/sate/data/anolis.fasta

Step 7: Hit the “Open” button in the file browser, then “OK” to the prompt about reading the data now.

Step 8: Click on the “Job Settings”»“Output Dir.” and choose Desktop/sateoutput. Change “Job Set-
tings”»“Job Name” to defaultanolis for this run.

Step 9: Click the “Start” button

Step 10: After the previous run completes, uncheck the box in “Initial alignment: Use for initial tree” box,
and Click Start again.

Step 11: After the previous run completes, use the “Tree file (optional)” button to select Desktop/sate/data/anolis.tre,
and Click Start again.

Step 12: Examine the output file in Desktop/sateoutput

Step 13: Examine the tree using FigTree

Step 14: Download and unpack http://phylo.bio.ku.edu/software/sate/tutorial.zip
Step 15: Launch SATé again, and read the data file Desktop/sate/data/BBA0067.input.fasta
Step 16: Choose Desktop/sate/data/BBA0067 startingtree.tre as the “Tree file”

Step 17: Choose your analysis settings and Start the analysis

Step 18: Look at the output trees and alignments in Mesquite

Step 19: Start command-line invocation; open a terminal and navigate to your SATé directory

Step 20: On Mac and *nix use:
python run_sate.py --auto -i data/anolis.fasta

On Windows use:
run_sate.exe --auto -i data\anolis.fasta

Step 21: Examine the configuration file outputted by SAT¢é and copy it as sate config.txt for future runs.

Step 22: Modify sate config.txt to change the output directory, the job name, and treatment of temporary
files.

Step 23: Run SATé¢ with a configuration file: python run_sate.py sate_config.txt
Step 24: Examine SAT¢ help to better understand its settings: python run_sate.py -h

Step 25: Mix command-line options and configuration file: python run_sate.py
-i data/pythonidae.fasta -j pythonidae -o sateout_pythonidae sate_config.txt

Step 26: Change arguments passed to FastTree by setting args = -pseudo -nosupport -fastest under
[fasttree] and run python run_sate.py -o sateout_cmd_ftoptions sate_config.txt.

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 20

http://groups.google.com/group/sate-user?hl=en
http://phylo.bio.ku.edu/software/sate/tutorial.zip

SATé demo 2012

Step 27: Configure SATé to use a different RAxML instance installed on your machine.

Step 28: You can use Mesquite to generate a NEXUS file. If you want to use MrBayes, you will need to
remove the TITLE commands from the NEXUS that Mesquite saves

Step 29: Launch SATé. Click the “Multi-Locus Data” checkbox.

Step 30: Click the “Sequence files...” button and navigate to the data/figwasps directory. Choose the
directory. Choose the starting.tre in that directory as your “Tree file (optional)” entry. Start the run.

Step 31: You can use Mesquite to produce a concatenated alignment from the multi-file FASTA output of
SATé.

Step 32: Run the GUI and click the “Extra RAxML Search” box to cause a final search on RAxML

Step 33: After SATé (and all of its subprocesses) have completed, you can throw away the tempo-
rary files in the HOME/ .sate directory.

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 21

SATé demo 2012

8 SATé tool invocations

8.1 Aligners

1. MAFFT
If < 200 sequences and mazrimum sequence length is < 10000:
mafft --localpair --maxiterate 1000 --ep 0.123 --quiet input.fasta
Otherwise:
mafft --ep 0.123 --quiet input.fasta
Note, on Windows this calls ‘mafft.exe’, whereas on Linux and Mac the actual invocation is
‘python mafft’
2. OPAL
java -Xmx1024m -jar opal.jar --in input.fasta --out input.aligned --quiet

Where ‘1024’ reflects the maximum memory option provided to SATE.

3. Clustal

clustalw2 -align -infile=input.fasta -outfile=input.aligned -output=fasta

4. PRANK

prank -once -noxml -notree -nopost +F -quiet -matinitsize=5 -uselogs -d=input.fasta
-o=input.aligned

8.2 Mergers

1. MUSCLE

muscle -inl 1.fasta -in2 2.fasta -out out.fasta -quiet -profile

2. OPAL

java -Xmx1024m -jar opal.jar --in 1l.fasta --in2 2.fasta --out out.fasta --align_method
profile

8.3 Tree estimators

1. FastTree

If DNA:

fasttree -quiet -nt -<MODEL> -log log input.fasta

If protein:

fasttree -quiet -<MODEL> -log log input.fasta

If starting tree provided:

fasttree -quiet -<MODEL> -intree start.tre -log log input.fasta
2. RAxML

raxml -m <MODEL> -n <NAME> -q partition.txt -s input.phy

If starting tree provided:

raxml -m <MODEL> -n <NAME> -q partition.txt -s input.phy -t start.tre

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 22

SATé demo 2012

9 Additional Information/Resources

SATé uses the phylogenetic relatedness of sequences to divide-and-conquer large alignment problems by
augmenting existing alignment tools. Other software that might be of interest, include:

BAIli-Phy BAIli-Phy is a Bayesian method of joint alignment and phylogeny estimation. If you are interested,
you can find the BAli-Phy documentation here.

PRANK PRANK uses a guide phylogeny to identify insertions and avoid over-estimating deletion events.
If you are interested, you can download it here, use the web server here, and find more information
here.

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 23

http://www.biomath.ucla.edu/msuchard/bali-phy/index.php
http://www.biomath.ucla.edu/msuchard/bali-phy/index.php
http://www.biomath.ucla.edu/msuchard/bali-phy/help.php#usersguide
http://code.google.com/p/prank-msa/
http://code.google.com/p/prank-msa/
http://code.google.com/p/prank-msa/
http://www.ebi.ac.uk/goldman-srv/webPRANK/
http://www.ebi.ac.uk/goldman-srv/prank/

SATé demo 2012

References

Anderson, C. L., C. L. Strope, and E. N. Moriyama. 2011. SuiteMSA: visual tools for multiple sequence
alignment comparison and molecular sequence simulation. BMC bioinformatics 12:184.

Berger, S. A., D. Krompass, and A. Stamatakis. 2011. Performance, Accuracy, and Web Server for Evolu-
tionary Placement of Short Sequence Reads under Maximum Likelihood. Systematic Biology 60:291-302.

Cannone, J., S. Subramanian, M. Schnare, J. Collett, L. D’Souza, Y. Du, B. Feng, N. Lin, L. Madabusi,
K. Muller, N. Pande, Z. Shang, N. Yu, and R. Gutell. 2002. The comparative rna web (crw) site: an online
database of comparative sequence and structure information for ribosomal, intron, and other rnas. BMC
Bioinformatics 3:2.

Edgar, R. 2004. Muscle: a multiple sequence alignment method with reduced time and space complexity.
BMC Bioinformatics 5:113.

Katoh, K., K. Kuma, H. Toh, and T. Miyata. 2005. Mafft version 5: improvement in accuracy of multiple
sequence alignment. Nucleic Acids Research 33:511-518.

Katoh, K. and H. Toh. 2006. PartTree: an algorithm to build an approximate tree from a large number of
unaligned sequences. Bioinformatics (Oxford, England) 23:372-374.

Liu, K., T. J. Warnow, M. T. Holder, S. Nelesen, J. Yu, A. Stamatakis, and C. R. Linder. 2012. SATé-II:
Very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees.
Systematic Biology 61:90-106.

Matsen, F., R. Kodner, and E. V. Armbrust. 2010. pplacer: linear time maximum-likelihood and Bayesian
phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11:538+.

Mirarab, S., N.-P. Nguyen, and T. Warnow. 2012. Sepp: Saté-enabled phylogenetic placement. in Proceedings
of the 2012 Pacific Symposium on Biocomputing.

Price, M. N., P. S. Dehal, and A. P. Arkin. 2010. FastTree 2 — approximately maximum-likelihood trees for
large alignments. PLoS One 5:¢9490.

Wheeler, T. J. and J. D. Kececioglu. 2007. Multiple alignment by aligning alignments. Bioinformatics (Ox-
ford, England) 23:1559-68.

Tutorial content released under Creative Commons Attribution 3.0 Unported License. 24

	SATé Lab
	Version and Author information

	Background Information
	Limitations of SATé
	Basic algorithmic structure

	Tutorial
	Installation
	Simple test run
	Input files
	Output files locations
	Running SATé
	A comment on starting trees

	SuiteMSA demo
	SATé on a protein sequence dataset
	Using Mesquite with SATé output

	Command-line version of SATé
	Simple Command-line invocation
	Understanding Configuration Files
	Using SATé Help
	Advanced Command-line specific options

	GARLI-2.0
	SATé Miscellany
	Converting SATé output to NEXUS for GARLI or MrBayes
	Multimarker analyses in SATé
	Postprocessing with RAxML
	SATé temp files

	Quick version of the tutorial
	SATé tool invocations
	Aligners
	Mergers
	Tree estimators

	Additional Information/Resources

