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Reasons phylogenetic inference might be wrong

1. Systematic error – Our inference method might

not be sophisticated enough

2. Random error – We might not have enough data

– we are misled by sampling error.

(or it could be some combination of these).

Focus of this lecture: How confident can we be in
the trees/splits inferred by ML?



1. Bootstrapping

2. Putting P -values on trees:

• KH Test, SH Test

• parametric bootstrapping,

• aLRT, aBayes,

• 1 - BP,

• AU and Efron et al. (1996) correction

• aBP

3. Cartoon time! (warning: “cartoon time” will not actually be fun)

4. More caveats



Some resources related to this talk

A Zotero Group of papers related to topology testing

on trees.

A http://phylo.bio.ku.edu/woodshole/index.

html has the beginnings of an annotated

bibliography and some other notes.

The source for all the documents for my talk are at:

https://github.com/mtholder/TreeTopoTestingTalks

https://github.com/mtholder/treeTestingDemo

http://www.zotero.org/groups/confidence_statements_on_phylogenies
http://phylo.bio.ku.edu/woodshole/index.html
http://phylo.bio.ku.edu/woodshole/index.html
https://github.com/mtholder/TreeTopoTestingTalks
https://github.com/mtholder/treeTestingDemo
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The bootstrap for phylogenies
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The majority-rule consensus tr ee
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From Hasegawa’s analysis of 232 sites D-loop



Bootstrapping for branch support

• Typically a few hundred bootstrap, pseudoreplicate datasets

are produced.

• Less thorough searching is faster, but will usually artificially

lower bootstrap proportions (BP). However, Anisimova et al.

(2011) report that RAxML’s rapid bootstrap algorithm may

inflate BP.

• “Rogue” taxa can lower support for many splits – you do not

have to use the majority-rule consensus tree to summarize

bootstrap confidence statements.



Frequentist hypothesis testing: coin flipping example

N = 100 and h = 60

Can we reject the fair coin hypothesis? H0 : Pr(heads) = 0.5

The “recipe” is:

1. Formulate null (H0) and alternative (HA) hypotheses.

2. Choose an acceptable Type-I error rate (significance level)

3. Choose a test statistic: fH= fraction of heads in sample.

fH = 0.6

4. Characterize the null distribution of the test statistic

5. Calculate the P -value: The probability of a test statistic

value more extreme than fH arising even if H0 is true.

6. Reject H0 if P -value is ≤ your Type I error rate.
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Null distribution
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Making similar plots for tree inference is hard.

• Our parameter space is trees and branch lengths.

• Our data is a matrix of characters.

• It is hard to put these objects on the same plot.

• We will see later (during “cartoon time”), that we can

visualize them both in a parameter space that describes the

frequency of different data patterns.



The simplest phylogenetic test would compare two trees

Null: If we had no sampling error (infinite data) T1

and T2 would explain the data equally well.

Test Statistic:

δ(T1, T2 | X) = 2 [lnL(T1 | X)− lnL(T2 | X)]

Expectation under null:

EH0 [δ(T1, T2 | X)] = 0



Using 3000 sites of mtDNA sequence for 5 primates

T1 is ((chimp, gorilla), human)



Using 3000 sites of mtDNA sequence for 5 primates

T2 is ((chimp, human), gorilla)



Using 3000 sites of mtDNA sequence for 5 primates

T1 is ((chimp, gorilla), human) lnL(T1 | X) = −7363.296

T2 is ((chimp, human), gorilla) lnL(T2 | X) = −7361.707

δ(T1, T2 | X) = −3.18 E(δ)
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δ(T1, T2 | X)



To get the P -value, we need to know the probability:

Pr
(∣∣δ(T1, T2 | X)

∣∣ ≥ 3.18
∣∣∣H0 is true

)

δ(T1, T2 | X) = −3.18 −δ(T1, T2 | X) = 3.18

← →
E(δ)

0.0 1.0 2.0-2.0 -1.0-3.0 3.0

δ(T1, T2 | X)



KH Test

1. Examine the difference in lnL for each site:

δ(T1, T2 | Xi) for site i.

2. Note that the total difference is simply a sum:

δ(T1, T2 | X) =

M∑

i=1

δ(T1, T2 | Xi)

3. The variance of δ(T1, T2 | X) will be a function of

the variance in “site” δ(T1, T2 | Xi) values.
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KH Test - the variance of δ(T1, T2 | X)

To approximate variance of δ(T1, T2 | X) under the

null, we could:

1. use assumptions of Normality (by appealing to the

Central Limit Theorem). Or

2. use bootstrapping to generate a cloud of pseudo-

replicate δ(T1, T2 | X∗) values, and look at their

variance.



δ for many (RELL) bootstrapped replicates of the data
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RELL bootstrap

Often, the MLE of numerical parameters (including branch

lengths) do not change much when we bootstrap.

So, we can simply resample the site lnL values and sum them

(rather than reoptimizing parameters).

This is called the RELL bootstrap (Kishino et al., 1990,

and Felsenstein). It is not a “safe” replacement for normal

bootstrapping (especially on large trees; Stamatakis et al.,

2008) when you want to estimate clade support.

But it should be good enough for helping us learn about the

standard error of the lnL.

And it is really fast.



The (RELL) bootstrapped sample of statistics.
Is this the null distribution for our δ test statistic?
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KH Test - ‘centering’

H0 gives us the expected value:

EH0 [δ(T1, T2 | X)] = 0

Bootstrapping gives us a reasonable guess of the variance under

H0

By subtracting the mean of the bootstrapped δ(T1, T2 | X∗)
values, we can create a null distribution.

For each of the j bootstrap replicates, we treat

δ(T1, T2 | X∗j)− δ̄(T1, T2 | X∗)

as draws from the null distribution.



δ(T1, T2 | X(j))− δ̄(T1, T2 | X∗)
for many (RELL) bootstrapped replicates of the data
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Approximate null distribution with

tails (absolute value ≥ 3.18) shown
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Summary - Part 1

• δ(T1, T2 | X) = 2 [lnL(T1 | X)− lnL(T2 | X)] is a powerful

statistic for discrimination between trees.

• We can assess confidence by considering the variance in

signal between different characters.

• Bootstrapping helps us assess the variance in lnL that we

would expect to result from sampling error.



Scenario

1. A (presumably evil) competing lab scoops you by publishing

a tree, T1, for your favorite group of organisms.

2. You have just collected a new dataset for the group, and

your ML estimate of the best tree, T2, differ’s from T1.

3. A KH Test shows that your data significantly prefer T2 over

T1.

4. You write a (presumably scathing) response article.

Should a Systematic Biology publish your response?



What if start out with only one hypothesized tree, and
we want to compare it to the ML tree?

The KH Test is NOT appropriate in this context (see Goldman

et al., 2000, for discussion of this point)

Multiple Comparisons: lots of trees increases the variance of

δ(T̂ , T1 | X)

Selection bias: Picking the ML tree to serve as one of the

hypotheses invalidates the centering procedure of the KH test.



Using the ML tree in your test introduces selection bias

Even when the H0 is true, we do not expect

2
[
lnL(T̂ )− lnL(T1)

]
= 0

Imagine a competition in which a large number of equally skilled

people compete, and you compare the score of one competitor

against the highest scorer.



Experiment: 70 people each flip a fair coin 100 times and

count # heads.

h1 − h2
Null dist.: difference in # heads any two competitors

Diff # heads

F
re

qu
en

cy

−30 −20 −10 0 10 20 30

0
20

0
40

0
60

0
80

0
10

00
12

00



Experiment: 70 people each flip a fair coin 100 times and

count # heads.

h1 − h2 max(h)− h1
Null dist.: difference in # heads any two competitors

Diff # heads
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Shimodaira and Hasegawa proposed the SH test which
deals the “selection bias” introduced by using the ML
tree in your test

You have to specify of a set of candidate trees - inclusion in

this set must not depend on the dataset to be analyzed.

The null hypothesis is that all members of the candidate set

have the same expected score.

The test makes worst-case assumptions, so the SH test is
conservative.



SH test candidate set selection

• Should be all trees that you would have seriously entertained

before seeing the data (considering a subset of trees for

computational convenience can invalidate the test).

• Using all trees is safe.

• If a tree has low lnL and low variance of site-log-likelihoods

then it can probably be safely removed without affecting the

P -values of other trees1

1Because such a tree would be unlikely to ever be the tree that is the determines the maximum diplacement

from the centered value, m(j).



SH Test details

• For each tree Ti in the candidate set calculate δ(T̂ , Ti | X)
• Bootstrap to generate lnL(Ti | X(j)) for each bootstrap replicate j.
• For each tree Ti, use the mean, ¯lnL(Ti | X∗), over all bootstrap

replicates to center the bootstrapped collection of log-likelihoods:

c
(j)
i = lnL(Ti | X(j))− ¯lnL(Ti | X∗)

• For each bootstrap replicate, j, pick the highest value from the centered
distributions (this mimics the selection bias):

m(j) = max
[
c
(j)
i

]
over all i

• Then for each tree and replicate, you get a sample from the null

δ
(j)
i = m(j) − c(j)i

• P -value for tree Ti is approximated by the proportions of bootstrap reps
for which:

δ
(j)
i ≤ δ(T̂ , Ti | X)



Can we test trees using the LRT?
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1. Should we calculate the LRT as:

δi = 2
[
lnL(t = t̂, Ti | X)− lnL(t = 0, Ti | X)

]

2. And can we use the χ2
1 distribution to

get the critical value for δ?
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1. Should we calculate the LRT as:

δi = 2
[
lnL(t = t̂, Ti | X)− lnL(t = 0, Ti | X)

]

No. t = 0 might not yield the best

alternative lnL

2. And can we use the χ2
1 distribution to

get the critical value for δ ?

No. Constraining parameters

at boundaries leads to a mixture

such as: 1
2χ

2
0 + 1

2χ
2
1

See Ota et al. (2000).
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Can we test trees using the LRT?

No, tree hypotheses
are not nested!



Another ways to assess the null distribution of the LR
test statistic

• Bootstrapping then centering LR, and

• Using normality assumptions.

are both clever and cute solutions.

But they do not match the null distribution under any model

of sequence evolution.



Parametric bootstrapping to generate the null
distribution for the LR statistic

1. find the best tree and model pair that are consistent with

the null,

2. Simulate many datasets under the parameters of that model,

3. Calculate δ(j) = 2
[
lnL(T̂ (j) | X(j))− lnL(T̂

(j)
0 | X(j))

]

for each simulated dataset.

• the (j) is just an index for the simulated dataset,

• T̂ (j)
0 is the tree under the null hypothesis for simulation

replicate j



Parametric bootstrapping

This procedure is often referred to as SOWH test (in that form,

the null tree is specified a priori).

Huelsenbeck et al. (1996) describes how to use the approach

as a test for monophyly.

Intuitive and powerful, but not robust to model violation

(Buckley, 2002).

Detailed step-by-step instructions in https://molevol.mbl.

edu/wiki/index.php/ParametricBootstrappingLab

https://molevol.mbl.edu/wiki/index.php/ParametricBootstrappingLab
https://molevol.mbl.edu/wiki/index.php/ParametricBootstrappingLab


Null distribution of the difference in number of steps under GTR+I+G
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Null distribution of the difference in number of steps under JC
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aLRT of Anisimova and Gascuel (2006)

• For a branch j, calculate δ†j as twice the difference in lnL

between the optimal tree (which has the branch) and the

best NNI neighbor.

• This is very fast.

• They argue that the null distribution for each LRT around

the polytomy follows a 1
2χ

2
0 + 1

2χ
2
1 distribution

• The introduce Bonferroni-correction appropriate for

correcting for the selection of the best of the three

resolutions.

• They find aLRT to be accurate and powerful in simulations,

but Anisimova et al. (2011) report that it rejects too often

and is sensitive to model violation.



aLRT = 2 [ln `1 − lnL(T2 | X)]

`1 = L(T1 | X)

Image from Anisimova and Gascuel (2006)



aBayes Anisimova et al. (2011)

aBayes(T1 | X) =
Pr(X | T1)

Pr(X | T1) + Pr(X | T2) + Pr(X | T3)

Simulation studies of Anisimova et al. (2011) show it to have

the best power of the methods that do not have inflated

probability of falsely rejecting the null.

It is sensitive to model violation.

This is similar to “likelihood-mapping” of Strimmer and von

Haeseler (1997)



Bootstrap proportions have been characterized as

providing:

• a measure of repeatability,

• an estimate of the probability that the tree is

correct (and bootstrapping has been criticized as

being too conservative in this context),

• the P-value for a tree or clade



coin flipping (yet again)

N = 100 and H = 60

Can we reject the hypothesis of a fair coin?

We can use simulation to generate the null

distribution (we could actually use the binomial

distribution to analytically solve this one)...



A simulation of the null distribution of the # heads
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P-value ≈ 0.029



We discussed how bootstrapping gives us a sense of

the variability ofour estimate

It can also give a tail probability for Pr(f
(boot)
H ≤ 0.5)

Amazingly (for many applications):

Pr(f̂H ≥ 0.6 | null is true) ≈ Pr(f
(boot)
H ≤ 0.5)

In other words, the P -value is approximate by the

fraction of bootstrap replicates consistent with the

null.



Distribution of the # heads in bootstrap resampled datasets
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Pr(p(boot) ≤ 0.5) ≈ 0.027

BP = frac. of p(boot) ≥ 0.5

BP ≈ 0.973
P -value ≈ 1−BP



A simulation of the null distribution of the # heads
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• When you decide between trees, the boundaries

between tree hypotheses can be curved

• When the boundary of the hypothesis space is

curved, 1 - BP can be a poor approximation of the

P -value.

– Efron et al. (1996)



Efron et al. (1996) view of tree space

coefficient between the first two malaria species, Pre and Pme,
at the 221 sites, with (A, G, C, T) interpreted as (1, 2, 5, 6): !̂ !
0.616. How accurate is !̂ as an estimate of the true correla-
tion !? The nonparametric bootstrap answers such questions
without making distributional assumptions.

Each bootstrap data set x* gives a bootstrap estimate !̂*, in
this case the sample correlation between the first two rows of
x*. The central idea of the bootstrap is to use the observed
distribution of the differences !̂* " !̂ to infer the unobservable
distribution of !̂ " !; in other words to learn about the accuracy
of !̂. In our example, the 200 bootstrap replications of !̂* " !̂
were observed to have expectation 0.622 and standard devi-
ation 0.052. The inference is that !̂ is nearly unbiased for
estimating !, with a standard error of about 0.052. We can also
calculate bootstrap confidence intervals for !. A well-
developed theory supports the validity of these inferences [see
Efron and Tibshirani (1)].

Felsenstein’s application of the bootstrap is nonstandard in
one important way: the statistic TRÊE, unlike the correlation
coefficient, does not change smoothly as a function of the data
set x. Rather, TRÊE is constant within large regions of the
x-space, and then changes discontinuously as certain bound-
aries are crossed. This behavior raises questions about the
bootstrap inferences, questions that are investigated in the
sections that follow.

A Model For The Bootstrap

The rationale underlying the bootstrap confidence values
depends on a simple multinomial probability model. There are
K ! 411 " 4 possible column vectors for x, the number of
vectors of length 11 based on a 4-letter alphabet, not counting
the 4 monotypic ones. Call these vectors X1, X2, . . ., XK, and
suppose that each observed column of x is an independent

selection from X1, X2, . . ., XK, equaling Xk with probability "k.
This is the multinomial model for the generation of x.

Denote
˜
" ! ("1, "2,. . ., "K), so the sum of

˜
" ’s coordinates

is 1. The data matrix x can be characterized by the proportion
of its n ! 221 columns equalling each possible Xk, say

"̂k # ##columns of x equalling Xk$!n,

with
˜
"̂ ! ("̂1, "̂2, . . ., "̂K). This is a very inefficient way to

represent the data, since 411 " 4 is so much bigger than 221,
but it is useful for understanding the bootstrap. Later we will
see that only the vectors Xk that actually occur in x need be
considered, at most n of them.

Almost always the distance matrix D̂ is a function of the
observed proportions

˜
"̂, so we can write the tree-building

algorithm as

"̂
˜
3 D̂ 3 TRÊE.

In a similar way the vector of true probabilities
˜
" gives a true

distance matrix and a true tree,

"
˜
3 D 3 TREE.

D would be the matrix with ijth element {%k"k(Xki " Xk j)2}1!2

in our example, and TREE the tree obtained by applying the
maximizing connection algorithm to D.

Fig. 3 is a schematic picture of the space of possible
˜
"

vectors, divided into regions !1, !2, . . .. The regions corre-
spond to different possible trees, so if "

˜
! !j the jth possible

tree results. We hope that TRÊE ! TREE, which is to say

FIG. 1. Part of the data matrix of aligned nucleotide sequences for the malaria parasite Plasmodium. Shown are the first 20 columns of the 11
& 221 matrix x of polytypic sites used in most of the analyses below. The final analysis of the last section also uses the data from 1399 monotypic
sites.

FIG. 2. Phylogenetic tree based on the malaria data matrix; species
are numbered as in Fig. 1. The numbers at the branches are confidence
values based on Felsenstein’s bootstrap method. B ! 200 bootstrap
replications.

FIG. 3. Schematic diagram of tree estimation; triangle represents
the space of all possible

˜
" vectors in the multinomial probability

model; regions !1, !2. . . correspond to the different possible trees.
In the case shown

˜
" and

˜
"̂ lie in the same region so TREE !

TRÊE, but
˜
"̂ * lies in a region where TRÊE* does not have the 9-10

clade.

13430 Correction Efron et al. Proc. Natl. Acad. Sci. USA 93 (1996)



Parsimony-informative Pattern Frequency Space
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Imagine hypothesis tests of locations with different border shapes:

H0

H1

H0

H1



Similar dataset with point estimates (red dot) in H1

Green dot is the hardest set of locations in H0 to reject.



In the straight border case, symmetry implies that:

The actual P -value (blue region) ≈ 1−BP
(1−BP is the blue below)



In the curved border case, the symmetry breaks down:

The actual P -value (blue region) 6= 1−BP
(1−BP is the blue below)



• Efron et al. (1996) proposed a computationally

expensive multi-level bootstrap (which has not

been widely used).

• Shimodaira (2002) used the same theoretical

framework to devise a (more feasible)

Approximately Unbiased (AU) test of topologies.

– Multiple scales of bootstrap resampling (80% of

characters, 90%, 100%, 110%. . .) are used to

detect and correct for curvature of the boundary.

– Implemented in the new versions of PAUP∗



Susko (2010) adjusted BP – aBP

• Susko agrees with curvature arguments of Efron et al. (1996)

and Shimodaira (2002), but points out that they ignore the

sharp point in parameter space around the polytomy.

• He correct bootstrap proportions: 1 − aBP accurately

estimates the P -value.

• The method uses the multivariate normal distributions the

based on calculations about the curvature of the likelihood

surface.

• You need to perform a different correction when you know

the candidate tree a priori versus when you are putting BP

on the ML tree.

• BP may not be conservative when you correct for selection

bias.
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Summary - Part 1

• δ(T1, T2 | X) = 2 [lnL(T1 | X)− lnL(T2 | X)] is a powerful

statistic for discrimination between trees.

• We can assess confidence by considering the variance in

signal between different characters.

• Bootstrapping helps us assess the variance in lnL that we

would expect to result from sampling error.



Summary - Part 2

A (very) wide variety of tests differ by:

• Null hypotheses:

– Expected scores are the same → boundary tests. Non-parametric
tests

– A tree consistent with the null is correct → tests that use the full info
of the model. Parametric tests

• How to use variance information:

– Rely on “raw” bootstrap variability,
– Invoke assumptions of normality of scores,
– Use χ2 variants.

• Whether or not the trees must be specified a priori – KH Test requires
the trees to be specified a priori.



Summary - Part 3

Parametric Nonparametric

P -value from δ aLRT, aBayes,

parametric

bootstrapping

KH, SH

P -value from BP aBP(semi) BP, aBP(semi),

AU, EHH

When you use a parametric test, you will usually gain power.

But non-parametric tests are more robust to model violation.



Cartoon time courtesy of the Kim (2000) view of tree
space

methods now can be drawn as a partitioning of the
simplex into labeled points (each label being the iden-
tity of the tree topology). In the following sections, I use
this geometric setup to give a pictorial description of a
variety of concepts and phenomena that arise in phy-
logenetic estimation.

Applications

Combining Data Sets and Mixture Models

Combining data sets has been extensively discussed in
the literature (see De Queiroz et al., 1995). Given the
view of data sets as points in the character pattern sim-
plex, we can obtain a very simple geometrical picture of a
combined data set. Associate with data set X a point x in
the simplex, and with data set Y a point y in the simplex.
Then the combination of the two data sets lies on a line
connecting the two data sets because it is a convex linear
combination of the frequencies of character patterns in
each data set. The exact position on the line will depend
on the relative sizes of the data sets such that the ratio of
the distance from the combined data set to the two orig-
inal data sets will be proportional to the relative sizes of
the data sets (Fig. 8a).

The same picture can be drawn for mixture models
where some of the characters are generated from one
kind of model (say a model with fast rates of evolution)
and the other characters are generated from a different
kind of model (say a model with slow rates of evolu-
tion). Again, the mixture model lies on some point
within the line drawn between the two points repre-
senting the original models. The position of the point
representing the mixture model depends now on the
model of the mixture. For example, we might have a
mixture model consisting of 1

2 probability of drawing

from model X (with the corresponding point x) and 1
2

probability of drawing from model Y (with the corre-
sponding point y). Then the mixture model will be
represented by a point halfway on the line connecting x
and y. More generally, there might be a mixture model
of drawing from model X with probability ! and draw-
ing from model Y with probability 1 ! !. Then the
point representing the mixture model is ! distance
away from point y (assuming that the line connecting x
and y has unit distance; Fig. 8a). More complicated
models can be generated with the assumption that !
has some prior distribution like the beta distribution.
Then, the unconditional mixture model is obtained by
integrating over the prior distribution (in a suitable
sense) and the mixture model point will be a/(a " b)
distance from point y, where a and b are the parame-
ters of the beta distribution.

This discussion can be extended to the commonly
used model of gamma distributed rate mixture models

FIG. 8. (a) When two models or two data sets are combined, it
corresponds to drawing a line between the two model points in the
simplex (shown labeled as x and y) and selecting a point on the line.
The particular position of the mixture (combination) point is propor-
tional to the mixture proportions. (b) A model of rate variation across
sites can be seen as a model curve that is a subset of model manifold.
The (vector-valued) model curve, c(#), is parameterized by the rate
variable, #. Points along this curve correspond to taking a particular
tree shape and expanding the shape or contracting the shape (shown
by the trees on the left). (c) A gamma distribution model of rate
variation across sites is equivalent to integrating the model curve,
c(#). The result of the integration is a point inside the convex hull of
the model curve.

FIG. 7. A schematic diagram of the geometry of phylogenetic
estimation. The triangle represents the character pattern simplex.
The tree model is a subspace of this simplex (shown as the gray
object). A tree estimation method is a partition of the simplex into
tree topologies (shown as the speckled object). Finite-sized data sets
are rational points of the simplex (shown as a grid).
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Pattern Frequency Space With Observed Data

P(1100)

P(1010) P(1001)

fX



ML scores in Pattern Frequency Space

P(1100) 

P(1010) P(1001) 

lnL(T1 | X) = −DKL(fX | fT1)



LR statistics in Pattern Frequency Space

P(1100)

P(1010) P(1001) 

Black is lnL(TAB)− lnL(TAC) Yellow is lnL(TAB)− lnL(TAD)



aLRT and aBayes in Pattern Frequency Space

P(1100)

P(1010) P(1001) 

In aLRT, we use mixtures of χ2

and selection bias corrections
to calculate the P -value.

In aBayes, we normalize
the ML scores to sum to 1



Non-parametric Bootstrapping in Pattern Frequency
Space
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Bootstrapping in Pattern Frequency Space (if you had
more data)

AU Test uses multiple sequence
lengths to correct BP for
any curvature in the boundary
between trees

P(1100) 

P(1010) P(1001) 



Parametric bootstrapping in Pattern Frequency Space

P(1100)

P(1010) P(1001) 

Uses the δ test statistic
and a null distribution
centered on point that
arises from the best
tree in H0



KH Test in Pattern Frequency Space

P(1100)

P(1010) P(1001) 

Uses the δ test statistic
and a null distribution
centered on the boundary



aBP in Pattern Frequency Space

Null distribution for BP
is calculated using
Normal approximations from
polytomy

P(1100)

P(1010) P(1001) 



Summary - Part 2

A (very) wide variety of tests differ by:

• Null hypotheses:

– Expected scores are the same → boundary tests. Non-parametric
tests

– A tree consistent with the null is correct → tests that use the full info
of the model. Parametric tests

• How to use variance information:

– Rely on “raw” bootstrap variability,
– Invoke assumptions of normality of scores,
– Use χ2 variants.

• Whether or not the trees must be specified a priori – KH Test requires
the trees to be specified a priori.



Summary - Part 3

Parametric Nonparametric

P -value from δ aLRT, aBayes,

parametric

bootstrapping

KH, SH

P -value from BP aBP(semi) BP, aBP(semi),

AU, EHH

When you use a parametric test, you will usually gain power.

But non-parametric tests are more robust to model violation.



Significantly different genealogy 6= different phylogeny

• True “gene tree” can differ from true “species tree” for

several biological reasons:

– deep coalescence,

– gene duplication/loss (you may be comparing paralogs),

– lateral gene transfer.



Increased appreciation of the multiple
levels of genealogy

Instead of:
P(X | T )

where X is the data, and T is the phylogeny,
a separation into:

P(X|G)P(G|L)P(L|T )

where G is a gene tree, L is a �locus tree� (Rasmussen and
Kellis, 2012).



Gene Duplication

Figure 2A from Rasmussen and Kellis (2012)



Mapping gene/locus/species trees

Figure 3A from Rasmussen and Kellis (2012)



Species tree inference accounting for
coalescence

Figure 2 from Heled and Drummond (2010)



Joint estimation of gene duplication,
loss, and coalescence with DLCoalRecon

Figure 2A from Rasmussen and Kellis (2012)



Joint estimation of gene duplication,
loss, and species trees using PHYLDOG

Figure 2A from Boussau et al. (2013)



Future: improved integration of DL
models and coalescence

Figure 2B from Rasmussen and Kellis (2012)



Very Rapid Turnover of A-superfamily
conotoxin genes in Conus

Dup/Loss

Rates of duplications estimated by Notung (Vernot et al., 2008)
and PrIME-GSR (Åkerborg et al., 2009)

Figure 1 from Chang and Duda (2012)



Lateral Gene Transfer

Figure 2c from Szöll®si et al. (2013)



Lateral Gene Transfer

Figure 3 from Szöll®si et al. (2013)

They 423 single-copy genes

in ≥ 34 of 36 cyanobacteria

They estimate:

2.56 losses/family

2.15 transfers/family

≈ 28% of transfers between

non-overlapping branches



Modeling Allopolyploidization

Figure 1 from Jones et al. (2013)



Example of inferring allopolyploidization
in Silene

AlloppMUL

AlloppNET

Models implemented as add-ons to BEAST

Figure 7 from Jones et al. (2013)



Schumer et al. (2013) use synteny information and size

of introgressed blocks to reject hybridization in favor of

admixture.

Tools: PhyML_multi (Boussau et al., 2009) and
windows of seq analyzed with AU test.



We often don’t want to test tree topologies

• If we are conducting a “comparative method” we have to

consider phylogenetic history,

• ideally we would integrate out the uncertainty in the

phylogeny,

• this entails averaging over trees, but not averaging P -values

(or point estimates) over trees.



Berger and Boos. 1994. �P Values Maximized Over a
Con�dence Set for the Nuisance Parameter.� Journal of the

American Statistical Association. 89(427). 1012�1016.

To calcuate a P value, when there is an unknown, nuisance
parameter, θ:

1 Calculate a (1− β) con�dence set for θ (e.g for a 99%
con�dence set, β = 0.01)

2 Calculate a P value for every θ in the con�dence set:
call this vector p(θ)

3 P = max[p(θ)] + β



In phylogenetics, if we used Berger and Boos' method, we
would need to:

1 Get a 99% con�dence set. The AU test could help, but
this could be a very large set trees

2 Conduct the comparative method assuming each of the
trees, and store the highest P value

3 Report 0.01 + the highest P value

We tend to simply perform the comparative method over a
collection of trees (from bootstrapping or MCMC) and
report a mean.

It is not clear (to me) whether we should be using the
Berger and Boos method, instead.
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Bootstrapping as a noisy measure of repeatability

% recovering tree

bootstrap

values from

many simulations

repeated

simulation

Simulation study of

Hillis and Bull (1993)



Bootstrap Proportion 6= Posterior Probability

Several studies have compared the non-parametric bootstrap proportion of
clade from an ML analysis of a data set to the posterior probabilities when
the same data is analyzed under the same model (Suzuki et al., 2002;
Wilcox et al., 2002; Alfaro et al., 2003; Cummings et al., 2003; Douady
et al., 2003).

Note: Not all of these have implied that the measures should be the same,
but some authors have (usually citing Efron et al., 1996).



Bootstrap Proportion 6= Posterior Probability in general

phylogenetic estimation accuracy than did bootstrap
support values (Fig. 5). In our simulations, nonpara-
metric bootstrapping significantly underestimated the
probability of recovering a clade for all but the lowest
support values, as has been previously reported by several

authors (Hillis and Bull, 1993; Rodrigo, 1993; Zharkikh
and Li, 1995). In contrast, Bayesian support values pro-
vided much closer estimates of the true probabilities of
recovering the respective clades, although they also were
conservative measures of phylogenetic accuracy (Fig. 5).

4. Discussion

4.1. Snake phylogeny

Based on morphological analysis of cephalic soft-
tissues, Zaher (1994) proposed that the traditional

Fig. 5. Comparison of Bayesian and nonparametric bootstrap support
values. (a) Histogram showing the proportion of bipartitions in each
support bin from 120 simulations for Bayesian values and nonpara-
metric bootstrap support values. Note that the average support values
are higher for Bayesian compared to bootstrap analyses. (b) The re-
lationship between the percentage of correct bipartitions and per-
centage support values for the respective bipartitions for Bayesian and
nonparametric bootstrapping analyses. Error bars are the binomial
standard errors around the proportion of correct bipartitions in each
bin. The dotted diagonal line indicates perfect correspondence between
phylogenetic accuracy (percentage of correct bipartitions) and percent
support values. Both Bayesian and nonparametric bootstrapping un-
derestimate phylogenetic accuracy at higher levels of support, but
Bayesian support values are much better indicators of phylogenetic
accuracy under the conditions we examined.

Fig. 4. Results of parametric bootstrap analysis. Model trees were
constructed for each hypothesis by conducting maximum-likelihood
searches with taxa constrained to be compatible with each hypothesis
(constraints inset for each hypothesis). The distributions of the dif-
ferences in likelihood scores between the optimal trees and the best
trees that fit the respective constraint are shown for 100 simulations for
each tested hypothesis. In each case, the difference in likelihood scores
between model and observed trees for the original data (arrows) was
considerably greater than expected if the corresponding hypothesis
were true. Therefore, all three of these hypotheses are rejected at
p < 0:01. (a) Test of the monophyly of the traditional Tropidophiidae.
(b) Test of the sister-group relationship between Tropidophiidae (sensu
Zaher; Tropidophis plus Trachyboa) and Caenophidea. (c) Test of the
monophyly of Booidea (sensu Zaher).

366 T.P. Wilcox et al. / Molecular Phylogenetics and Evolution 25 (2002) 361–371

from Wilcox et al. (2002)

Note: Huelsenbeck and Rannala (2004) showed that the Bayesian posterior probabilities
are right on the equality line, if you simulate from the prior.



Newton (1996) showed that, when you look at the
median, the BP may not be biased downward324 MICHAEL A. NEWTON
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0-4 0-5 0-6 07 0-8
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0-9 10

Fig. 4. Bootstrap bias: the histogram summarises 1855 draws
for the conditional distribution of a bootstrap proportion,
given correct estimation of the topology, in a case of high

accuracy; see Table 2, second column of numbers.

Kishino (1993) reproduce the same behaviour in a simple model and suggest that the
problem is not inherent to bootstrapping. Results presented here show that this bias is a
general phenomenon, occurring for any number of taxa, for a wide range of topology
estimators, and under mild assumptions on the sampling process. In fact, the results extend
beyond phylogenetic analysis to general discrete parameter inference. This bias is a prop-
erty of the joint distribution of sample and bootstrap empirical distributions, and dimin-
ishes with increasing sample size. Notwithstanding the bias, the conditional distribution
of the bootstrap topology estimator accurately approximates the sampling distribution of
the topology estimator.

Large deviation theory establishes these general statements. The large deviation approxi-
mation itself is often hard to calculate, and appears to be worse than the bootstrap
approximation. We do not advocate the use of large deviations to estimate probabilities.
The method is invoked simply to enable a general comparison of bootstrap and sampling
probabilities.

That the bootstrap underestimates high accuracies, on average, has been interpreted as
a conservative feature. One is tempted to conclude, upon observing a high bootstrap
proportion, that the true accuracy is likely to be higher. This conclusion is unfounded,
however, as the example of Fig. 4 demonstrates. The median bias, outside of our theoretical
analysis, is much smaller than the mean bias in this example. When the true accuracy is
high, it may be that about half the bootstrap proportions are smaller and about half are
larger, even though on average in magnitude they are smaller.

When the number of tree topologies is large compared to the number of sites, it may
be that no single tree yields a high bootstrap proportion. Thus the relevance of compu-
tations involving extreme probabilities is questionable. However, the systematist may be
interested instead in the proportion of bootstrap trees in which a particular subgroup of
taxa is monophyletic, that is to say, forms a branch by itself. Being an agglomeration of
different tree topologies, this set may yield a high bootstrap proportion. Furthermore, the
probability that the topology estimator possesses such a branch is simply the probability

Figure 4 from Newton (1996)



What did Efron et al. (1996) say?

We can use a Bayesian model to show that α̃ is a reasonable assessment
of the probability that R1 contains µ. Suppose we believe a priori that µ
could lie anywhere in the plane with equal probability. Then having observed
µ̂, the a posteriori distribution of µ given µ̂ is N2(µ̂, I) exactly the same
as the bootstrap distribution of µ̂∗. In other words, α̃ is the a posteriori
probability of the event µ ∈ R1, if we begin with an “uninformative” prior
density for µ.that

˜
! and

˜
!̂ lie in the same region, or at least that TRÊE and

TREE agree in their most important aspects.
The bootstrap data matrix x* has proportions of columns say

!̂k
* " #!columns of x* equalling Xk"!n,

!̂
˜

* # (!̂1
*, !̂2

*, . . . . , !̂K
* ). We can indicate the bootstrap

tree-building

!̂
˜

* 3 D̂* 3 TRÊE*,

The hypothetical example of Fig. 3 puts
˜
! and

˜
!̂ in the same

region, so that the estimate TRÊE exactly equals the true
TREE. However

˜
!̂* lies in a different region, with TRÊE* not

having the 9-10 clade. This actually happened in 7 out of the
200 bootstrap replications for Fig. 2.

What the critics of Felsenstein’s method call its bias is the
fact that the probability TRÊE* # TREE is usually less than
the probability TRÊE # TREE. In terms of Fig. 3, this means
that

˜
!̂* has less probability than

˜
!̂ of lying in the same region

as
˜
!. Hillis and Bull (3) give specific simulation examples. The

discussion below is intended to show that this property is not
a bias, and that to a first order of approximation the bootstrap
confidence values provide a correct assessment of TRÊE’s
accuracy. A more valid criticism of Felsenstein’s method,
discussed later, involves its relationship with the standard
theory of statistical confidence levels based on hypothesis tests.

Returning to the correlation example of the previous sec-
tion, it is not true that #̂* $ # (as opposed to #̂* $ #̂) has the
same distribution as#̂ $ #, even approximately. In fact#̂* $ # will
have nearly twice the variance of #̂ $ #, the sum of the variances
of #̂ around # and of #̂* around #̂. Similarly in Fig. 3 the average
distance from

˜
!̂* to

˜
! will be greater than the average distance

from
˜
!̂ to

˜
!. This is the underlying reason for results like those of

Hillis and Bull, that
˜
!̂* has less probability than

˜
!̂ of lying in the

same region as
˜
!. However, to make valid bootstrap inferences we

need to use the observed differences between TRÊE* and
TRÊE (not between TRÊE* and TREE) to infer the differences
between TRÊE and TREE. Just how this can be done is
discussed using a simplified model in the next two sections.

A Simpler Model

The meaning of the bootstrap confidence values can be more
easily explained using a simple normal model rather than the
multinomial model. This same tactic is used in Felsenstein and
Kishino (4). Now we assume that the data x # (x1, x2) is a two
dimensional normal vector with expectation vector ! # ($1,
$2) and identity covariance matrix, written

x " N2%!, I&.

In other words x1 and x2 are independent normal variates with
expectations $1 and $2, and variances 1. The obvious estimate
of ! is !̂ # x, and we will use this notation in what follows. The
!-plane is partitioned into regions !1, !2, !3, . . . similarly to
Fig. 3. We observe that !̂ lies in one of these regions, say !1,
and we wish to assign a confidence value to the event that !
itself lies in !1.

Two examples are illustrated in Fig. 4. In both of them x #
!̂ # (4.5,0) lies in !1, one of two possible regions. Case I has
!2 # {! : !1 % 3}, a half-plane, while case II has !2 # {! :
#!# %3}, a disk of radius 3.

Bootstrap sampling in our simplified problem can be taken
to be

x* " N2%!̂, I&.

This is a parametric version of the bootstrap, as in section 6.5
of Efron and Tibshirani (1), rather than the more familiar
nonparametric bootstrap considered previously, but it pro-
vides the proper analogy with the multinomial model. The
dashed circles in Fig. 4 indicate the bootstrap density of !̂* #
x*, centered at !̂. Felsenstein’s confidence value is the boot-
strap probability that !̂* lies in !1, say

&̃ " Prob!̂!!̂* " !1".

The notation Prob!̂ emphasizes that the bootstrap probability
is computed with !̂ fixed and only !̂* random. The bivariate
normal model of this section is simple enough to allow the &̃
values to be calculated theoretically, without doing simula-
tions,

&̃I " 0.933 and &̃II " 0.949.

Notice that &̃II is bigger than &̃I because !1 is bigger in case II.
In our normal model, !̂* $ !̂ has the same distribution as

!̂ $ !, both distributions being the standard bivariate normal
N2(0, I). The general idea of the bootstrap is to use the
observable bootstrap distribution of !̂* $ !̂ to say something
about the unobservable distribution of the error !̂ $ !. Notice,
however, that the marginal distribution of !̂* $ ! has twice as
much variance,

!̂* ' ! " N2%O, 2I&.

This generates the ‘‘bias’’ discussed previously, that !̂* has less
probability than !̂ of being in the same region as !. But this
kind of interpretation of bootstrap results cannot give correct
inferences. Newton (5) makes a similar point, as do Zharkikh
and Li (6) and Felsenstein and Kishino (4).

We can use a Bayesian model to show that &̃ is a reasonable
assessment of the probability that !1 contains $. Suppose we
believe apriori that ! could lie anywhere in the plane with
equal probability. Then having observed !̂, the aposteriori
distribution of ! given !̂ is N2(!̂, I), exactly the same as the
bootstrap distribution of !̂*. In other words, &̃ is the aposteriori
probability of the event ! " !1, if we begin with an ‘‘unin-
formative’’ prior density for !.

Almost the same thing happens in the multinomial model.
The bootstrap probability that TRÊE* # TRÊE is almost the
same as the aposteriori probability that TREE # TRÊE
starting from an uninformative prior density on

˜
! [see section

10.6 of Efron (7)]. The same statement holds for any part of
the tree, for example the existence of the 9-10 clade in Fig. 2.
There are reasons for being skeptical about the Bayesian
argument, as discussed in the next section. However, the
argument shows that Felsenstein’s bootstrap confidence values
are at least reasonable and certainly cannot be universally
biased downward.

FIG. 4. Two cases of the simple normal model; in both we observe
!̂ # (4.5, 0) " !1, and wish to assign a confidence value to ! " !1.
Case I, !2 is the region {$1 % 3}. Case II, !2 is the region {#!# ' 3}.
The dashed circles indicate bootstrap sampling !̂* ( N2(!̂, I).

Correction: Efron et al. Proc. Natl. Acad. Sci. USA 93 (1996) 13431



Efron et al. (1996) view of tree space

coefficient between the first two malaria species, Pre and Pme,
at the 221 sites, with (A, G, C, T) interpreted as (1, 2, 5, 6): !̂ !
0.616. How accurate is !̂ as an estimate of the true correla-
tion !? The nonparametric bootstrap answers such questions
without making distributional assumptions.

Each bootstrap data set x* gives a bootstrap estimate !̂*, in
this case the sample correlation between the first two rows of
x*. The central idea of the bootstrap is to use the observed
distribution of the differences !̂* " !̂ to infer the unobservable
distribution of !̂ " !; in other words to learn about the accuracy
of !̂. In our example, the 200 bootstrap replications of !̂* " !̂
were observed to have expectation 0.622 and standard devi-
ation 0.052. The inference is that !̂ is nearly unbiased for
estimating !, with a standard error of about 0.052. We can also
calculate bootstrap confidence intervals for !. A well-
developed theory supports the validity of these inferences [see
Efron and Tibshirani (1)].

Felsenstein’s application of the bootstrap is nonstandard in
one important way: the statistic TRÊE, unlike the correlation
coefficient, does not change smoothly as a function of the data
set x. Rather, TRÊE is constant within large regions of the
x-space, and then changes discontinuously as certain bound-
aries are crossed. This behavior raises questions about the
bootstrap inferences, questions that are investigated in the
sections that follow.

A Model For The Bootstrap

The rationale underlying the bootstrap confidence values
depends on a simple multinomial probability model. There are
K ! 411 " 4 possible column vectors for x, the number of
vectors of length 11 based on a 4-letter alphabet, not counting
the 4 monotypic ones. Call these vectors X1, X2, . . ., XK, and
suppose that each observed column of x is an independent

selection from X1, X2, . . ., XK, equaling Xk with probability "k.
This is the multinomial model for the generation of x.

Denote
˜
" ! ("1, "2,. . ., "K), so the sum of

˜
" ’s coordinates

is 1. The data matrix x can be characterized by the proportion
of its n ! 221 columns equalling each possible Xk, say

"̂k # ##columns of x equalling Xk$!n,

with
˜
"̂ ! ("̂1, "̂2, . . ., "̂K). This is a very inefficient way to

represent the data, since 411 " 4 is so much bigger than 221,
but it is useful for understanding the bootstrap. Later we will
see that only the vectors Xk that actually occur in x need be
considered, at most n of them.

Almost always the distance matrix D̂ is a function of the
observed proportions

˜
"̂, so we can write the tree-building

algorithm as

"̂
˜
3 D̂ 3 TRÊE.

In a similar way the vector of true probabilities
˜
" gives a true

distance matrix and a true tree,

"
˜
3 D 3 TREE.

D would be the matrix with ijth element {%k"k(Xki " Xk j)2}1!2

in our example, and TREE the tree obtained by applying the
maximizing connection algorithm to D.

Fig. 3 is a schematic picture of the space of possible
˜
"

vectors, divided into regions !1, !2, . . .. The regions corre-
spond to different possible trees, so if "

˜
! !j the jth possible

tree results. We hope that TRÊE ! TREE, which is to say

FIG. 1. Part of the data matrix of aligned nucleotide sequences for the malaria parasite Plasmodium. Shown are the first 20 columns of the 11
& 221 matrix x of polytypic sites used in most of the analyses below. The final analysis of the last section also uses the data from 1399 monotypic
sites.

FIG. 2. Phylogenetic tree based on the malaria data matrix; species
are numbered as in Fig. 1. The numbers at the branches are confidence
values based on Felsenstein’s bootstrap method. B ! 200 bootstrap
replications.

FIG. 3. Schematic diagram of tree estimation; triangle represents
the space of all possible

˜
" vectors in the multinomial probability

model; regions !1, !2. . . correspond to the different possible trees.
In the case shown

˜
" and

˜
"̂ lie in the same region so TREE !

TRÊE, but
˜
"̂ * lies in a region where TRÊE* does not have the 9-10

clade.

13430 Correction Efron et al. Proc. Natl. Acad. Sci. USA 93 (1996)



What did Efron et al. (1996) say (and mean)?

• the “uninformative” prior density is a uniform prior over all of pattern
frequency space

• this is not equivalent to a prior that would be expected to yield a
phylogeny (it is actually identical to the prior you would get if you
assumed that all pairwise distances between taxa were ∞),

• Efron et al. (1996) were not predicting that the bootstrap proportions
should be identical to those from a Bayesian phylogenetic analysis with
real phylogenetic priors.

• Svennblad et al. (2006) have a nice paper on this subject.



Newton (1996) provides an intuition for why the mean
BP may be lower than repeatability
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That the bootstrap approximations are superior highlights the limits of large deviation
theory to uncover the detailed structure of the bootstrap distribution.

There is a geometric explanation for bootstrap underestimation. When the probability
of correctly estimating the topology is relatively high, Pn will tend to be closer to the other
topologies, i.e. to R), than P is. The bootstrap proportion tends to be lower than the
target probability because it is easier for the bootstrap sample to escape Rj. Figure 3
illustrates this argument by projecting the three-taxon model of Fig. 2 onto the facing
triangle.

Figure 4 shows an estimate of the sampling distribution of the nonparametric bootstrap
proportion for one case, the second column of numbers in Table 2. To compute this, 2000
samples Pn are drawn, and, for each one leading to x(Pn) = xu about 93%, 10 000
samples Qn are drawn from the bootstrap distribution, and the bootstrap proportion
pr{f(gn) = Tl\Pn} is recorded. Note the significant skewness in this distribution. Although
theoretically and from Table 2 there is a bias, in the mean sense, the median bootstrap
proportion is very close to the true accuracy in this example.

5. IS THERE SOMETHING WRONG WITH THE BOOTSTRAP?
The discreteness of the parameter space in phylogenetic analysis, and the need to associ-

ate measures of uncertainty with inferred tree structures, raise statistical questions that
existing theory does not address. Efron's bootstrap naturally produces an estimate for the
sampling distribution of any topology estimator, but several studies have suggested a bias.
Zharkikh & Li (1992a, b) establish bias analytically for a particular estimator in a four-
taxon model. Hillis & Bull (1993) make similar observations in a simulation study. Put
simply, if the chance of correctly estimating the phylogeny is high, then, on average over
data sets, the bootstrap proportion estimating this probability is smaller. Felsenstein &

0010

0100 0001

Fig. 3. Bootstrap underestimation: the triangle rep-
resents the projection of y 4 of Fig. 2 onto the near
face. Solid contours indicate the true sampling distri-
bution of Pm, and hence of the topology estimator.
Dashed contours indicate the bootstrap distribution of
Q, conditional on a particular PH, and are drawn to
illustrate that probability in this distribution leaks out
of region Rt into regions leading to false topology
estimates. Of course the contours mask the true dis-

creteness of both distributions.

Darker ovals indicate probability contours for datasets given the truth

(note that repeatability ≈ 100%)

Lighter ovals show probability contours for bootstrapping for one dataset.

Many real datasets will have BP much < 100%

Figure 3 from Newton (1996)
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Case 1 Case 2

R0 R1

µ̂µ†

R0 R1

µ̂µ†

µ̂ is the best point calculated from the data
µ† is least-favorable condition (LFC) point in R0

green areas are the tails - they correspond to values of the test
statistic more extreme than µ̂ (relative to that µ ∈ R0



Case 1 Case 2

R0 R1 R0 R1

µ̂ is the best point calculated from the data
µ† is least-favorable condition (LFC) point in R0

Case 1 P-value < the P-value in Case 2



Case 1 Case 2

R0 R1 R0 R1

In case 1 - the bootstrap proportion is a good estimate of the P-value
In case 2 - the bootstrap proportion underestimates the P-value



Case 3 Case 4

R0 R1

µ†µ̂

R0 R1

µ†µ̂

µ̂ is the best point calculated from the data
µ† is least-favorable condition (LFC) point in R1



Case 3 Case 4

R0 R1

µ†µ̂

R0 R1

µ†µ̂

µ̂ is the best point calculated from the data
µ† is least-favorable condition (LFC) point in R0

green areas are the tails - they correspond to values of the test
statistic more extreme than µ̂ (relative to that µ ∈ R1)



Case 3 Case 4

R0 R1 R0 R1

Case 3 P-value > the P-value in Case 4



Case 3 Case 4

R0 R1 R0 R1

In case 3 - the bootstrap proportion is a good estimate of the P-value
In case 4 - the bootstrap proportion overestimates the P-value



Efron et al. (1996) pointed out these issues of curvature of the

boundaries between tree hypotheses.

We cannot see the boundaries in tree space, so it is hard

to know how to correct for the biases so that we can use

bootstrapping procedures as a means of getting a P-value for

a clade – the probability that we would see this much support

(or stronger support) for a clade if it were not present in the

true tree.



Find replicates that return a tree without the cladeInitial bootstrap

µ̂ µ̂



Find replicates that return a tree without the clade Find boundary points between regions

µ̂ µ̂



Bootstrap from these boundary points to check
curvature of the boundary

Find boundary points between regions



The corrected bootstrap procedure of Efron et al. (1996)

requires a very large number of bootstrap replicates because

you need very accurate estimates of the curvature in order

to apply the correction. Shimodaira (2002) expanded on this

work:

• d is the distance from the point that corresponds to the data

and the closest point on the boundary between another tree

• Φ(·) denotes the cumulative density function of the standard

Normal(0,1) distribution.

• c denotes the curvature of the boundary

• the P-value for the KH test is given by KH = Φ(d)



• Shimodaira argues (from an early Efron paper) that the

appropriate P-value for tree selection is:

AU = 1− Φ(d− c)

• In “standard” non parametric bootstrapping proportions are:

BP = 1− Φ(d+ c)

Note the incorrect sign with respect to the curvature term

causes BP (and recall how on the curved boundary examples,

the curvature caused the P-value to change in one direction

and the BP to go in the other).

How can we find c so that we can correct for it?



• N is the number of characters in the real data set

• N ′ is the number of characters in each bootstrap data set

• r = N ′
N

• If you do a bootstrap in which r 6= 1, Shimodaira determined

the expected effect on the bootstrap proportion as a function

of d and c:

BP (r) = 1− Φ

(
d
√
r +

c√
r

)



r = 0.5 r = 0.8

r = 1.0 r = 1.2



AU Test

1. conduct a sweep of bootstraps with r varying (for instance

r = 0.5, r = 0.6, r = 0.7, . . . r = 1.4, to get a set of BP (r)

for a tree.

2. Use weighted least squares to estimate c and d form the set

of BP (r)

3. Calculate

AU = 1− Φ(d− c)

This lets you calculate a P-value for any tree of interest, and

then you can construct a confidence set of trees.


