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Reasons phylogenetic inference might be wrong

1. Systematic error — Our inference method might
not be sophisticated enough

2. Random error — We might not have enough data
— we are misled by sampling error.

(or it could be some combination of these).

Focus of this lecture: How confident can we be in
the trees/splits inferred by ML?



1. Bootstrapping
2. Putting P-values on trees:
o KH Test, SH Test
e parametric bootstrapping,
e aLRT, aBayes,
o 1 - BP,
e AU and Efron et al. (1996) correction
e aBP
3. Cartoon time! (waming: “cartoon time” will not actually be fun )
4. More caveats



Some resources related to this talk

A Zotero Group of papers related to topology testing
on trees.

Ahttp://phylo.bio.ku.edu/woodshole/index.
html has the beginnings of an annotated
bibliography and some other notes.

The source for all the documents for my talk are at:
https://github.com/mtholder/TreeTopoTestingTalks

https://github.com/mtholder/treeTestingDemo


http://www.zotero.org/groups/confidence_statements_on_phylogenies
http://phylo.bio.ku.edu/woodshole/index.html
http://phylo.bio.ku.edu/woodshole/index.html
https://github.com/mtholder/TreeTopoTestingTalks
https://github.com/mtholder/treeTestingDemo
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The bootstrap for phylogenies
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The majority-rule consensus tree
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Bootstrapping for branch support

e Typically a few hundred bootstrap, pseudoreplicate datasets
are produced.

e Less thorough searching is faster, but will usually artificially
lower bootstrap proportions (BP). However, Anisimova et al.
(2011) report that RAXML's rapid bootstrap algorithm may
inflate BP.

e "Rogue” taxa can lower support for many splits — you do not
have to use the majority-rule consensus tree to summarize
bootstrap confidence statements.



Frequentist hypothesis testing: coin flipping example

N =100 and i = 60
Can we reject the fair coin hypothesis? Hj : Pr(heads) = 0.5

The “recipe” is:

1. Formulate null (Hg) and alternative (H4) hypotheses.

2. Choose an acceptable Type-| error rate (significance level)

3. Choose a test statistic: fyz= fraction of heads in sample.
frr =0.6

4. Characterize the null distribution of the test statistic

5. Calculate the P-value: The probability of a test statistic
value more extreme than fg arising even if Hy is true.

0. Reject Hy if P-value is < your Type | error rate.
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Making similar plots for tree inference is hard.

e Our parameter space is trees and branch lengths.
e Our data is a matrix of characters.
e It is hard to put these objects on the same plot.

e We will see later (during “cartoon time"), that we can
visualize them both in a parameter space that describes the
frequency of different data patterns.



The simplest phylogenetic test would compare two trees

Null: If we had no sampling error (infinite data) 1}
and 75 would explain the data equally well.

Test Statistic:

S(T1, Ty | X) =2[InL(T, | X) — In L(Ty | X)|

Expectation under null:

Er, [5(T1, T | X)] = 0



Using 3000 sites of mtDNA sequence for 5 primates

Ty is ((chimp, gorilla), human)

human

chimp

gorilla

orang

gibbon

0.02



Using 3000 sites of mtDNA sequence for 5 primates

T5 is ((chimp, human), gorilla)
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Using 3000 sites of mtDNA sequence for 5 primates

T is ((chimp, gorilla), human) In L(Ty | X) = —7363.296
T is ((chimp, human), gorilla) InL(T> | X) = —7361.707
5(Ty, Ty | X) = —3.18 E(S)
| |
| | | | | | |
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5(T1, Ty | X)



To get the P-value, we need to know the probability:

Pr (\5(T1,T2 X)| > 3.18|H0 s true)

5(Ty, Ty | X) = —3.18 E(5) —5(T, T» | X) = 3.18

L | 1 —

| | | | J
3.0 -2.0 -1.0

o(T1, T | X)

1.0 2.0 3.0



KH Test

1. Examine the difference in InL for each site:
5(T1,T2 ‘ Xz) for site 1.
2. Note that the total difference is simply a sum:

M
ST, T | X) =) 6(T1, Ty | X;)
1=1

3. The variance of 6(17,7T5 | X) will be a function of
the variance in “site” §(7171,T, | X;) values.
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KH Test - the variance of §(71,7> | X)

To approximate variance of §(77, 75 | X) under the
null, we could:

1. use assumptions of Normality (by appealing to the
Central Limit Theorem). Or

2. use bootstrapping to generate a cloud of pseudo-
replicate 6(731,T> | X*) values, and look at their
variance.



0 for many (RELL) bootstrapped replicates of the data
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RELL bootstrap

Often, the MLE of numerical parameters (including branch
lengths) do not change much when we bootstrap.

So, we can simply resample the site In L values and sum them
(rather than reoptimizing parameters).

This is called the RELL bootstrap (Kishino et al., 1990,
and Felsenstein). It is not a “safe” replacement for normal
bootstrapping (especially on large trees; Stamatakis et al.,
2008) when you want to estimate clade support.

But it should be good enough for helping us learn about the
standard error of the In L.

And it is really fast.



The (RELL) bootstrapped sample of statistics.
Is this the null distribution for our 0 test statistic?
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KH Test - ‘centering’

Hy gives us the expected value:
Eg, [0(Th, T2 | X)) =0

Bootstrapping gives us a reasonable guess of the variance under
H

By subtracting the mean of the bootstrapped 6(77,7T5 | X™)
values, we can create a null distribution.

For each of the 5 bootstrap replicates, we treat
S(Ty, To | X*) — (T, To | X*)

as draws from the null distribution.



S(Ty, T | XU = §(Ty, Ty | X*)
for many (RELL) bootstrapped replicates of the data
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Approximate null distribution with

tails (absolute value > 3.18) shown
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Summary - Part 1

e (11,15 | X)=2[InL(T1 | X) —In L(T | X)] is a powerful
statistic for discrimination between trees.

e \WWe can assess confidence by considering the variance in
signal between different characters.

e Bootstrapping helps us assess the variance in In L that we
would expect to result from sampling error.



Scenario

1. A (presumably evil) competing lab scoops you by publishing
a tree, 17, for your favorite group of organisms.

2. You have just collected a new dataset for the group, and
your ML estimate of the best tree, T5, differ's from T7.

3. A KH Test shows that your data significantly prefer T, over
T7.

4. You write a (presumably scathing) response article.

Should a Systematic Biology publish your response?



What if start out with only one hypothesized tree, and
we want to compare it to the ML tree?

The KH Test is NOT appropriate in this context (see Goldman
et al., 2000, for discussion of this point)

Multiple Comparisons: lots of trees increases the variance of
5(T7T1 | X)

Selection bias: Picking the ML tree to serve as one of the
hypotheses invalidates the centering procedure of the KH test.



Using the ML tree in your test introduces selection bias

Even when the Hy is true, we do not expect
2[1nL(T)—1nL(T1) — 0

Imagine a competition in which a large number of equally skilled
people compete, and you compare the score of one competitor
against the highest scorer.
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Experiment: 70 people each flip a fair coin 100 times and
count # heads.
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Shimodaira and Hasegawa proposed the SH test which
deals the “selection bias” introduced by using the ML
tree in your test

You have to specify of a set of candidate trees - inclusion in
this set must not depend on the dataset to be analyzed.

The null hypothesis is that all members of the candidate set
have the same expected score.

The test makes worst-case assumptions, so the SH test is
conservative.



SH test candidate set selection

e Should be all trees that you would have seriously entertained
before seeing the data (considering a subset of trees for
computational convenience can invalidate the test).

e Using all trees is safe.

e |f a tree has low In L and low variance of site-log-likelihoods
then it can probably be safely removed without affecting the
P-values of other trees’

1Because such a tree would be unlikely to ever be the tree that is the determines the maximum diplacement
from the centered value, m),



SH Test details

e For each tree T} in the candidate set calculate 6(7", T} | X)

e Bootstrap to generate In L(T; | X)) for each bootstrap replicate j.

e For each tree T}, use the mean, InL(T; | X*), over all bootstrap
replicates to center the bootstrapped collection of log-likelihoods:

¢ = L(T; | XY — In L(T; | X*)

e For each bootstrap replicate, j, pick the highest value from the centered
distributions (this mimics the selection bias):

m) = max [cz(-j)} over all ¢

e Then for each tree and replicate, you get a sample from the null
50 — () _ o)
e P-value for tree T; is approximated by the proportions of bootstrap reps

for which: . )



In Likelihood

Can we test trees using the LRT?
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In Likelihood

Can we test trees using the LRT?

192

1. Should we calculate the LRT as:
6;=2[InL(t=4T;|X)—InL{t=0,T;| X)]
No. ¢ = 0 might not yield the best
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See Ota et al. (2000).



Can we test trees using the LRT?
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No, tree hypotheses
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Another ways to assess the null distribution of the LR
test statistic

e Bootstrapping then centering LR, and

e Using normality assumptions.

are both clever and cute solutions.

But they do not match the null distribution under any model
of sequence evolution.



Parametric bootstrapping to generate the null
distribution for the LR statistic

1. find the best tree and model pair that are consistent with
the null,

2. Simulate many datasets under the parameters of that model,

3. Calculate 6U) = 2 {lnL(TAU) | X)) — lnL(Téj) | X(ﬂ)}
for each simulated dataset.
e the (j) is just an index for the simulated dataset,

) To(j) is the tree under the null hypothesis for simulation
replicate j



Parametric bootstrapping

This procedure is often referred to as SOWH test (in that form,
the null tree is specified a priori).

Huelsenbeck et al. (1996) describes how to use the approach
as a test for monophyly.

Intuitive and powerful, but not robust to model violation
(Buckley, 2002).

Detailed step-by-step instructions in https://molevol.mbl.
edu/wiki/index.php/ParametricBootstrappinglLab


https://molevol.mbl.edu/wiki/index.php/ParametricBootstrappingLab
https://molevol.mbl.edu/wiki/index.php/ParametricBootstrappingLab
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aLRT of Anisimova and Gascuel (2006)

e For a branch j, calculate 6; as twice the difference in In L
between the optimal tree (which has the branch) and the
best NNI neighbor.

e This is very fast.

e They argue that the null distribution for each LRT around
the polytomy follows a 2x3 + X3 distribution

e The introduce Bonferroni-correction appropriate for
correcting for the selection of the best of the three
resolutions.

e They find aLRT to be accurate and powerful in simulations,
but Anisimova et al. (2011) report that it rejects too often
and is sensitive to model violation.



(B) Second best, 4
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aLRT = 2 [11161 — IHL(TQ ’ X)]
0= L(T) | X)

Image from Anisimova and Gascuel (2006)



aBayes Anisimova et al. (2011)

Pr(X | Ty)
PI‘(X ‘ Tl) —+ PI’(X ‘ Tz) -+ PI‘(X ‘ Tg)

aBayes(Ty | X) =

Simulation studies of Anisimova et al. (2011) show it to have
the best power of the methods that do not have inflated
probability of falsely rejecting the null.

It Is sensitive to model violation.

This is similar to “likelihood-mapping” of Strimmer and von
Haeseler (1997)



Bootstrap proportions have been characterized as
providing:

e a measure of repeatability,

e an estimate of the probability that the tree is
correct (and bootstrapping has been criticized as
being too conservative in this context),

e the P-value for a tree or clade



coin flipping (yet again)

N =100 and H = 60
Can we reject the hypothesis of a fair coin?

We can use simulation to generate the null
distribution (we could actually use the binomial
distribution to analytically solve this one)...
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We discussed how bootstrapping gives us a sense of
the variability ofour estimate

It can also give a tail probability for Pr(fgmt) < 0.5)

Amazingly (for many applications):

Pr(fg > 0.6 | null is true) ~ Pr(f"" < 0.5)

In other words, the P-value is approximate by the
fraction of bootstrap replicates consistent with the
null.
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e When you decide between trees, the boundaries
between tree hypotheses can be curved

e When the boundary of the hypothesis space is
curved, 1 - BP can be a poor approximation of the
P-value.

— Efron et al. (1996)



Efron et al. (1996) view of tree space
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Parsimony-informative Pattern Frequency Space
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Imagine hypothesis tests of locations with different border shapes:



Similar dataset with point estimates (red dot) in H;

Green dot is the hardest set of locations in H to reject.




In the straight border case, symmetry implies that:

The actual P-value (blue region) ~1— BP
(1 — BP is the blue below)




In the curved border case, the symmetry breaks down:

The actual P-value (blue region) #1— BP
(1 — BP is the blue below)




e Efron et al. (1996) proposed a computationally
expensive multi-level bootstrap (which has not
been widely used).

e Shimodaira (2002) used the same theoretical
framework to devise a (more feasible)
Approximately Unbiased (AU) test of topologies.

— Multiple scales of bootstrap resampling (80% of
characters, 90%, 100%, 110%...) are used to
detect and correct for curvature of the boundary.

— Implemented in the new versions of PAUP*



Susko (2010) adjusted BP — aBP

e Susko agrees with curvature arguments of Efron et al. (1996)
and Shimodaira (2002), but points out that they ignore the
sharp point in parameter space around the polytomy.

e He correct bootstrap proportions: 1 — aBP accurately
estimates the P-value.

e The method uses the multivariate normal distributions the
based on calculations about the curvature of the likelihood
surface.

e You need to perform a different correction when you know
the candidate tree a priori versus when you are putting BP
on the ML tree.

e BP may not be conservative when you correct for selection
bias.



aBP
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Summary - Part 1

e (11,15 | X)=2[InL(T1 | X) —In L(T | X)] is a powerful
statistic for discrimination between trees.

e \WWe can assess confidence by considering the variance in
signal between different characters.

e Bootstrapping helps us assess the variance in In L that we
would expect to result from sampling error.



Summary - Part 2

A (very) wide variety of tests differ by:

e Null hypotheses:

— Expected scores are the same — boundary tests. Non-parametric

tests
— A tree consistent with the null is correct — tests that use the full info

of the model. Parametric tests

e How to use variance information:

— Rely on “raw” bootstrap variability,
— Invoke assumptions of normality of scores,
— Use x? variants.

e \Whether or not the trees must be specified a priori — KH Test requires
the trees to be specified a priori.



Summary - Part 3

Parametric Nonparametric
P-value from 0 | aLRT, aBayes, | KH, SH
parametric
bootstrapping
P-value from BP | aBP(semi) BP, aBP(semi),
AU, EHH

When you use a parametric test, you will usually gain power.
But non-parametric tests are more robust to model violation.



Cartoon time courtesy of the Kim (2000) view of tree
space
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Parsimony-informative Pattern Frequency Space
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Parsimony-informative Pattern Frequency Space
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Parsimony-informative Pattern Frequency Space
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Parsimony-informative Pattern Frequency Space
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Pattern Frequency Space With Observed Data
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ML scores in Pattern Frequency Space

P(1100)
InL(Ty | X) = —Dxr(fx | fr,
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LR statistics in Pattern Frequency Space

P(1100)
Black is In L(Tap) — In L(Ts¢) Yellow is In L(Tag) — In L(Tap)
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aLRT and aBayes in Pattern Frequency Space

P(1100)

In aLRT, we use mixtures of y?
and selection bias corrections
to calculate the P-value.

In aBayes, we normalize
the ML scores to sum to 1

P(1010) P(1001)



Non-parametric Bootstrapping in Pattern Frequency
Space

P(1100)

P(1010) P(1001)



Bootstrapping in Pattern Frequency Space (if you had
more data)

P(1100)

AU Test uses multiple sequence
lengths to correct BP for
any curvature in the boundary
between trees

P(1010) P(1001)



Parametric bootstrapping in Pattern Frequency Space

P(1100)

Uses the 0 test statistic
and a null distribution
centered on point that
arises from the best
tree iIn Hy
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KH Test in Pattern Frequency Space

P(1100)

Uses the ¢ test statistic
and a null distribution
centered on the boundary
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aBP in Pattern Frequency Space

P(1100)
Null distribution for BP

is calculated using
Normal approximations from
polytomy

P(1010) P(1001)



Summary - Part 2

A (very) wide variety of tests differ by:

e Null hypotheses:

— Expected scores are the same — boundary tests. Non-parametric

tests
— A tree consistent with the null is correct — tests that use the full info

of the model. Parametric tests

e How to use variance information:

— Rely on “raw” bootstrap variability,
— Invoke assumptions of normality of scores,
— Use x? variants.

e \Whether or not the trees must be specified a priori — KH Test requires
the trees to be specified a priori.



Summary - Part 3

Parametric Nonparametric
P-value from 0 | aLRT, aBayes, | KH, SH
parametric
bootstrapping
P-value from BP | aBP(semi) BP, aBP(semi),
AU, EHH

When you use a parametric test, you will usually gain power.
But non-parametric tests are more robust to model violation.



Significantly different genealogy # different phylogeny

e True “gene tree” can differ from true ‘“species tree” for
several biological reasons:

— deep coalescence,
— gene duplication/loss (you may be comparing paralogs),
— lateral gene transfer.



Increased appreciation ot the multiple
levels of genealogy

Instead of:
P(X |T)

where X 1s the data, and T is the phylogeny,
a separation into:

P(X|G)P(G|L)P(L|T)

where G is a gene tree, L is a “locus tree” (Rasmussen and
Kellis, 2012).



Gene Duplication
A

Locus 1 Locus 2

Figure 2A from Rasmussen and Kellis (2012)



Mapping gene/locus/species trees

A DLCoal Process

multilocus coal process dup-loss process

A B C

gene tree Locus tree Species tree

Figure 3A from Rasmussen and Kellis (2012)



opecies tree interence accounting for
coalescence
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Joint estimation of gene duplication,

loss, and coalescence with DLCoalRecon
A

Locus 1 Locus 2

Figure 2A from Rasmussen and Kellis (2012)



Joint estimation of gene duplication,

loss, and species

Ornithorhynchus anatinus
Ornithorhynchus anatinus
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Mus musculus
Mus musculus
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Cavia porcellus
Cavia porcellus
Oryctolagus cuniculus
Oryctolagus cuniculus
Callithrix jacchus
Homo sapiens
Homo sapiens
Homo sapiens
Fongo pygmaeus
Bos taurus
Bos taurus
Canis familiaris
Equus caballus
Equus caballus
Monodelphis domestica

trees using

0.3

Figure 2A from Boussau et al. (2013)
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Future: 1mproved integration or DL
models and coalescence
B

a. b, C, extinction C,
A = C B C
Locus 1 Locus 2

Figure 2B from Rasmussen and Kellis (2012)



Very hapid lurnover ol A-supertamily
conotoxin genes in Conus
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Rates of duplications estimated by Notung (Vernot et al., 2008)
and PrIME-GSR (Akerborg et al., 2009)

Figure 1 from Chang and Duda (2012)
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a) evolutionary scenario
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Modeling Allopolyploidization

trees
with
legs

multi-
labelled
trees

Figure 1 from Jones et al. (2013)
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AN EVALUATION OF THE HYBRID SPECIATION
HYPOTHESIS FOR XIPHOPHORUS CLEMENCIAE
BASED ON WHOLE GENOME SEQUENCES

Molly Schumer,’-2 Rongfeng Cui,?? Bastien Boussau,”® Ronald Walter,” Gil Rosenthal,** and
Peter Andolfatto’-®

Schumer et al. (2013) use synteny information and size
of introgressed blocks to reject hybridization in favor of
admixture.

Tools: PhyML multi (Boussau et al., 2009) and
windows of seq analyzed with AU test.



We often don’t want to test tree topologies

e |If we are conducting a “comparative method” we have to
consider phylogenetic history,

e ideally we would integrate out the uncertainty in the
phylogeny,

e this entails averaging over trees, but not averaging P-values
(or point estimates) over trees.



Berger and Boos. 1994. “P Values Maximized Over a
Confidence Set for the Nuisance Parameter.” Journal of the
American Statistical Association. 89(427). 1012-1016.

To calcuate a P value, when there is an unknown, nuisance
parameter, 6:

® Calculate a (1 — ) confidence set for 6 (e.g for a 99%
confidence set, g = 0.01)

® Calculate a P value for every 6 in the confidence set:
call this vector p(6)

® P — max[p(6)] + 8



In phylogenetics, if we used Berger and Boos’ method, we
would need to:

® Get a 99% confidence set. The AU test could help, but
this could be a very large set trees

® Conduct the comparative method assuming each of the
trees, and store the highest P value

® Report 0.01 + the highest P value

We tend to simply perform the comparative method over a
collection of trees (from bootstrapping or MCMC) and
report a mean.

[t is not clear (to me) whether we should be using the
Berger and Boos method, instead.
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Bootstrapping as

a noisy measure of repeatability
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Simulation study of
Hillis and Bull (1993)



Bootstrap Proportion # Posterior Probability

Several studies have compared the non-parametric bootstrap proportion of
clade from an ML analysis of a data set to the posterior probabilities when
the same data is analyzed under the same model (Suzuki et al., 2002;
Wilcox et al., 2002; Alfaro et al., 2003; Cummings et al., 2003; Douady
et al., 2003).

Note: Not all of these have implied that the measures should be the same,
but some authors have (usually citing Efron et al., 1996).



Bootstrap Proportion # Posterior Probability in general
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10 -m= Bootstrap
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Percentage Support
from Wilcox et al. (2002)

Note: Huelsenbeck and Rannala (2004) showed that the Bayesian posterior prc
are right on the equality line, if you simulate from the prior.



Newton (1996) showed that, when you look at the
median, the BP may not be biased downward
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Bootstrap proportion

Figure 4 from Newton (1996)



What did Efron et al. (1996) say?

We can use a Bayesian model to show that & is a reasonable assessment
of the probability that Z#; contains p. Suppose we believe a prior: that
could lie anywhere in the plane with equal probability. Then having observed
it, the a posteriori distribution of p given fi is No(fi, I) exactly the same
as the bootstrap distribution of ji*. In other words, & is the a posterior:
probability of the event u € %1, if we begin with an “uninformative” prior
density for u.

Boundary
R, R.
T~
A o —~ D
FA
Hr/ /// - ﬁ= (4.5,0)
L : I. { L \; j
0,0) (30)] N
\\ \_\ \\ — i /



Efron et al. (1996) view of tree space
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Boundary




What did Efron et al. (1996) say (and mean)?

e the “uninformative” prior density is a uniform prior over all of pattern
frequency space

e this is not equivalent to a prior that would be expected to yield a
phylogeny (it is actually identical to the prior you would get if you
assumed that all pairwise distances between taxa were co),

e Efron et al. (1996) were not predicting that the bootstrap proportions
should be identical to those from a Bayesian phylogenetic analysis with
real phylogenetic priors.

e Svennblad et al. (2006) have a nice paper on this subject.



Newton (1996) provides an intuition for why the mean
BP may be lower than repeatability

0010

Figure 3 from Newton (1996)

Darker ovals indicate probability contours for datasets given the truth
(note that repeatability ~ 100%)

Lighter ovals show probability contours for bootstrapping for one dataset.
Many real datasets will have BP much < 100%



Case 1 Case 2

{1 is the best point calculated from the data



Case 1 Case 2

{1 is the best point calculated from the data
4+ is least-favorable condition (LFC) point in Ry



Case 1 Case 2

{1 is the best point calculated from the data

i+ is least-favorable condition (LFC) point in Ry

green areas are the tails - they correspond to values of the test
statistic more extreme than i (relative to that u € Ry



Case 1 Case 2

{1 is the best point calculated from the data
4+ is least-favorable condition (LFC) point in Ry
Case 1 P-value < the P-value in Case 2



Case 1 Case 2

In case 1 - the bootstrap proportion is a good estimate of the P-value
In case 2 - the bootstrap proportion underestimates the P-value



Case 3 Case 4

{1 is the best point calculated from the data
p+ is least-favorable condition (LFC) point in R,



Case 3 Case 4

{1 is the best point calculated from the data

4+ is least-favorable condition (LFC) point in Ry

green areas are the tails - they correspond to values of the test
statistic more extreme than i (relative to that u € R;)



Case 3 Case 4

Case 3 P-value > the P-value in Case 4



Case 3 Case 4

In case 3 - the bootstrap proportion is a good estimate of the P-value
In case 4 - the bootstrap proportion overestimates the P-value



Efron et al. (1996) pointed out these issues of curvature of the
boundaries between tree hypotheses.

We cannot see the boundaries in tree space, so it is hard
to know how to correct for the biases so that we can use
bootstrapping procedures as a means of getting a P-value for
a clade — the probability that we would see this much support
(or stronger support) for a clade if it were not present in the
true tree.



Initial bootstrap Find replicates that return a tree without the clade




Find replicates that return a tree without the clade Find boundary points between regions




Find boundary points between regions Bootstrap from these boundary points to check
curvature of the boundary




The corrected bootstrap procedure of Efron et al. (1996)
requires a very large number of bootstrap replicates because
you need very accurate estimates of the curvature in order
to apply the correction. Shimodaira (2002) expanded on this
work:

e d is the distance from the point that corresponds to the data
and the closest point on the boundary between another tree

e O(-) denotes the cumulative density function of the standard
Normal(0,1) distribution.

e c denotes the curvature of the boundary

e the P-value for the KH test is given by K H = ®(d)



e Shimodaira argues (from an early Efron paper) that the
appropriate P-value for tree selection is:

AU =1—-®(d —¢)
e In “standard’ non parametric bootstrapping proportions are:
BP =1—-®(d+ ¢

Note the incorrect sign with respect to the curvature term
causes BP (and recall how on the curved boundary examples,
the curvature caused the P-value to change in one direction

and the BP to go in the other).

How can we find ¢ so that we can correct for it?



e /N is the number of characters in the real data set

e N’ is the number of characters in each bootstrap data set

_ N
® =5

e If you do a bootstrap in which r» # 1, Shimodaira determined
the expected effect on the bootstrap proportion as a function

of d and c:

BP(r)=1— & (dﬁ+%>






AU Test

1. conduct a sweep of bootstraps with r varying (for instance
r=0.51r=0.6,r=0.7,...mr = 1.4, to get a set of BP(r)
for a tree.

2. Use weighted least squares to estimate ¢ and d form the set
of BP(r)

3. Calculate

AU =1—-®(d — ¢)

This lets you calculate a P-value for any tree of interest, and
then you can construct a confidence set of trees.



