ML phylogenetic inference and GARLI

Derrick Zwickl
University of Arizona

Workshop on Molecular Evolution 2016
(Thanks to Paul Lewis for several slides)
Outline

• Heuristics and tree searches
• ML phylogeny inference and GARLI
• Using GARLI
• Gap (indel) models
Finding the tree with the best score

Difficulties:

1. Enormous number of trees to consider
2. Multiple local optima
3. Nested search: for each tree we should maximize the likelihood:
 • Numerical parameters of the model of sequence evolution
 • Branch-length parameters
 • Optimal parameter values are strongly correlated
 • http://phylo.bio.ku.edu/mephytis/brlen-opt.html
 • http://phylo.bio.ku.edu/mephytis/tree-opt.html
<table>
<thead>
<tr>
<th>Tips</th>
<th>Number of unrooted (binary) trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>945</td>
</tr>
<tr>
<td>8</td>
<td>10,395</td>
</tr>
<tr>
<td>9</td>
<td>135,135</td>
</tr>
<tr>
<td>10</td>
<td>2,027,025</td>
</tr>
<tr>
<td>11</td>
<td>34,459,425</td>
</tr>
<tr>
<td>12</td>
<td>654,729,075</td>
</tr>
<tr>
<td>13</td>
<td>13,749,310,575</td>
</tr>
<tr>
<td>14</td>
<td>316,234,143,225</td>
</tr>
<tr>
<td>15</td>
<td>7,905,853,580,625</td>
</tr>
<tr>
<td>16</td>
<td>213,458,046,676,875</td>
</tr>
<tr>
<td>17</td>
<td>6,190,283,353,629,375</td>
</tr>
<tr>
<td>18</td>
<td>191,898,783,962,510,625</td>
</tr>
<tr>
<td>19</td>
<td>6,332,659,870,762,850,625</td>
</tr>
<tr>
<td>20</td>
<td>22,164,309,5476,699,771,875</td>
</tr>
<tr>
<td>21</td>
<td>8,200,794,532,637,891,559,375</td>
</tr>
<tr>
<td>22</td>
<td>319,830,986,772,877,770,815,625</td>
</tr>
<tr>
<td>23</td>
<td>13,113,070,457,687,988,603,440,625</td>
</tr>
<tr>
<td>24</td>
<td>563,862,029,680,583,509,947,946,875</td>
</tr>
</tbody>
</table>
Finding the tree with the best score

Difficulties:

1. Enormous number of trees to consider
2. Multiple local optima
3. Nested search: for each tree we should maximize the likelihood:
 • Numerical parameters of the model of sequence evolution
 • Branch-length parameters
 • Optimal parameter values are strongly correlated
 • http://phylo.bio.ku.edu/mephytis/brlen-opt.html
 • http://phylo.bio.ku.edu/mephytis/tree-opt.html
A likelihood surface

Likelihood

Parameters values
A likelihood surface (from above)

- Global optimum
- Local optima
- Valleys

Parameter values
Finding the tree with the best score

Difficulties:

1. Enormous number of trees to consider
2. Multiple local optima
3. Nested search: for each tree we should maximize the likelihood:
 - Numerical parameters of the model of sequence evolution
 - Branch-length parameters
 - Optimal parameter values are strongly correlated

http://phylo.bio.ku.edu/mephytis/brlen-opt.html
http://phylo.bio.ku.edu/mephytis/tree-opt.html
General heuristic tree search

1. Generate a starting tree. Score this current tree.
2. Look at trees that are “close” to the current tree
3. Possibly update the “current tree”
4. Go back to step 2, unless the search has run a long time without improving the tree score.
Heuristic search features

1. Where does it start?

2. How are new values proposed? i.e. what do we mean when we say “look at a tree that is close to the current tree”?

3. How do we decide to accept a proposed tree so that it is the “current tree”?

4. When can you terminate the search?
Heuristic features

1. Where does it start?
 - User supplied starting tree
 - Star decomposition or Stepwise Addition
 - A randomly chosen tree
 - ...
Heuristics: starting point
Stepwise addition
Stepwise addition
Stepwise addition

(slide from POL)
Stepwise addition

- Greedy, but can introduce a new taxon on the path between taxa that have already been joined.

- The tree can depend on the input order of the taxa

- Number of trees scored for N taxa:

 \[\# \text{ trees scored} = \sum_{i=3}^{N-1} (2i - 3) \]

 \[= (N - 1)(N - 3) \]

 Thus, stepwise addition is $O(N^2)$. For $N=10$:

 \[63 = 3 + 5 + 7 + 9 + 11 + 13 + 15 \]
Heuristics: proposing new values
Phylogenetic searches

Think about moving through an abstract “treespace”

Nearby points in this treespace are connected by NNI (nearest neighbor interchange) branch swaps
Heuristics

Few restrictions on how a heuristic can work

Best choice likely problem specific
Moving through treespace: NNI branch swaps

Break internal branch

Reassemble
Schoenberg graph – edges connect NNI neighbors

(figure courtesy of Joe Felsenstein)
Subtree Pruning Regrafting (SPR) and Tree Bisection Reconnection (TBR)

SPR maintains subtree rooting

TBR tries all possible rootings

(figure courtesy of Paul Lewis)
SPR/TBR moves in NNI treespace
PAUP* HSearch – a hill climber

1. User chooses a starting tree method and a branch-swapping operation.
2. Propose a neighboring tree according to the swap
3. Accept the proposed tree if the score is better
4. Terminate if you have looked at every neighbor of the current tree.
GARLI

• Genetic Algorithm for Rapid Likelihood Inference
• Descendent of GAML (Lewis, 1998)
• Stochastic, genetic algorithm-like approach instead of deterministic hill climbing
• Terminates when the score/tree has not changed in a long time.
• Gradually optimizes tree topology, branch lengths and model parameters
• Accurate ML tree inference on large datasets (hundreds of sequences) in hours
The Genetic Algorithm

Computational analog of evolution by natural selection

A few simple requirements:
- Measure of fitness
- Method of selection
- Mutation operators
- Recombination operators
GA terminology

• Individual
 (topology+model parameter values+branch lengths)

• Population

• Fitness (log-likelihood)

• Selection function (fitness proportional)

• Generation
One generation

Create initial population of individuals

\[T, p_1, p_2, p_3, p_4, \ldots \]

\[T, p_1, p_2, p_3, p_4, \ldots \]

\[T, p_1, p_2, p_3, p_4, \ldots \]

\[T, p_1, p_2, p_3, p_4, \ldots \]
One generation

Create initial population of individuals

Apply stochastic mutations to individuals and/or recombine
One generation

Create initial population of individuals

Apply stochastic mutations to individuals and/or recombine

Partially optimize and score mutated individuals

$T, p_1, p_2, p_3, p_4, \ldots \rightarrow \ln L$

$T, p_1, p_2, p_3, p_4, \ldots \rightarrow \ln L$

$T, p_1, p_2, p_3, p_4, \ldots \rightarrow \ln L$

$T, p_1, p_2, p_3, p_4, \ldots \rightarrow \ln L$
One generation

Repeat many, many times

Create initial population of individuals

Apply stochastic mutations to individuals and/or recombine

Partially optimize and score mutated individuals

Use selection function to choose parents for the next generation
GA mutations

Similar to proposals in Bayesian MCMC phylogenetic methods (but with fewer restrictions)

Random component

GARLI uses independent mutations of tree topology, model parameters and branch-length parameters
Is GARLI a GA?

Well, no ...

The serial algorithm does not use recombination between individuals, which technically disqualifies it.

Also atypical of GA’s in other aspects (small population sizes, very strong selection pressure).
Computing the likelihood of a topology

\[
\ln L = \ln Pr(X \mid T, \nu_1, \nu_2, \nu_3, \nu_4, \ldots a, b, c \ldots)
\]

Branch-length parameters

Tree topology

Substitution model parameters

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>a\pi_c</td>
<td>b\pi_G</td>
<td>c\pi_T</td>
</tr>
<tr>
<td>C</td>
<td>a\pi_A</td>
<td>-</td>
<td>d\pi_G</td>
<td>e\pi_T</td>
</tr>
<tr>
<td>G</td>
<td>b\pi_A</td>
<td>d\pi_C</td>
<td>-</td>
<td>f\pi_T</td>
</tr>
<tr>
<td>T</td>
<td>c\pi_A</td>
<td>e\pi_C</td>
<td>f\pi_G</td>
<td>-</td>
</tr>
</tbody>
</table>
Computing the likelihood of a topology

\[\ln L = \ln Pr(X | T, 0.1, 0.1, 0.1, 0.1, \ldots, 1.0, 2.0, 3.0 \ldots) \]

\[= -242.83 \]
Computing the likelihood of a topology

\[\ln L = \ln \Pr(X \mid T, 0.1, 0.1, 0.2, 0.1, \ldots, 1.0, 2.0, 3.0 \ldots) \]

\[= -241.52 \]
The likelihood of a topology

A single topology represents range of likelihood scores, depending on parameter values.

The likelihood of a given tree and specific parameter values can be calculated quickly.
The maximized likelihood of a topology

The “likelihood of a tree”: the likelihood with other parameters at their optimal values **for that tree** (“maximized likelihood”)

All of the nice statistical theory for ML assumes that we have maximized the likelihood.

This following discussion will mainly deal with optimization of branch-length parameters
Obtaining the maximized likelihood

\[
\ln L = f(T, 0.1, 0.1, 0.2, 0.1 \ldots 1.0, 2.0, 3.0 \ldots) = -242.83
\]

\[
\ln L = f(T, 0.1, 0.1, 0.08, 0.1 \ldots 1.0, 2.0, 3.0 \ldots) = -241.52
\]

\[
\ln L = f(T, 0.05, 0.1, 0.08, 0.1 \ldots 1.0, 2.0, 3.0 \ldots) = -241.23
\]

\[
\ln L = f(T, 0.05, 0.1, 0.08, 0.16 \ldots 1.0, 2.0, 3.0 \ldots) = -241.11
\]

\[
\ln L = f(T, 0.05, 0.23, 0.08, 0.16 \ldots 1.2, 4.6, 1.7 \ldots) = -239.31
\]

\[
\ln L = f(T, 0.05, 0.23, 0.12, 0.16 \ldots 1.2, 4.6, 1.7 \ldots) = -239.29
\]

etc.
Parameter optimization

Find the numerical value of a parameter that maximizes the likelihood (conditional on current values of other parameters)

Many methods, generally based on slope of likelihood surface or bracketing of maximum

Parameters often cycled through sequentially

http://phylo.bio.ku.edu/mephytis/brlen-opt.html
Branch-length optimization
(Newton-Raphson method)

![Graph depicting the optimization of branch lengths using the Newton-Raphson method. The graph shows a curve representing the likelihood function, with the peak indicating the optimal branch length. Arrows point to the peak and the process of calculating derivatives to refine the estimate.]
Maximized likelihood: cons

Fully optimizing a single branch length can require significant computation

When one parameter changes, optimal values of all others also change
Heuristic runtimes

Inference time = \# of topologies to evaluate \times \text{time to evaluate each}

Both are strongly a function of the \# of sequences when calculating maximized likelihood.
Avoiding the maximized likelihood

We want to accurately judge the merits of topologies, *as if* we had the maximized likelihood

... *but without actually calculating it*

We’ll explore the idea of an approximate likelihood score for topologies
How accurate does a tree likelihood estimate need to be?
How accurate does a tree likelihood estimate need to be?

Acceptable range of estimate

L

A

B

C
How accurate does a tree likelihood estimate need to be?

(when tree scores are more similar)
Parameter optima and tree changes
(-arbitrary parameters α and β)

maximized likelihood

fixed parameter values

...
Parameter optima and tree changes
(arbitrary parameters α and β)

maximized likelihood

T_1 α β

T_2 α β

T_3 α β

partial optimization

T_1 α β

T_2 α β

T_3 α β
How important are branch-length values?
(three example branches in a specific 64-taxon tree)

Branch length 4x greater than optimum
= entire topology 50 lnL worse!
Branch length importance

If even one branch length is far from optimal, the estimated likelihood will not be useful.

How can we get around optimizing every branch length on every tree?
Using topological similarity

Successive trees are created by slightly modifying an existing tree

We can capitalize on this when dealing with branch-length parameters
Searching with approximate likelihoods

Branch lengths are optimized on a starting topology
Altering the tree: subtree pruning-regrafting (SPR)
Altering the tree: subtree pruning-regrafting (SPR)
Altering the tree: subtree pruning-regrafting (SPR)
Scoring and optimizing the new topology

Branch "split"

Branches "fused"
Scoring and optimizing the new topology

Other changes in optimal branch lengths?
Where do optimal branch lengths change?
GARLI’s post-swap optimization

Optimization rules:

1. Optimize the 3 proximal branches until near their optimal values
2. “Propagate” optimization outward to other branches
3. If a branch length is far from optimum, continue to propagate outward
4. After propagation, return to changed branches for another optimization pass
Optimal branch lengths only change here
This radius is not strongly dependent on tree size!
Topology evaluation times
(normalized with respect to # of site patterns)
Topology evaluation times
(normalized with respect to # of site patterns)
Conclusions

GARLI’s localized method makes branch-length optimization largely independent of the number of sequences.

Several other fast ML heuristics also owe much of their speed to localized optimization (PHYML, RAxML).
What about model parameters?

Model parameters also have different optimal values depending on the topology, branch lengths and other parameter values.

Fortunately, strong correlations between optimal model parameter values and topologies are rare.

GARLI avoids optimizing model parameters on each tree.
Using GARLI in practice
Using GARLI in practice

Performance comparisons (brief)

Allowed models

Search strategies
Performance comparisons against other software

More subjective than one would like:

• What constitutes comparable analyses?
• What criteria should be used to compare methods?
• Models and likelihood values often not exactly comparable
• Most software can be “tuned” to perform better on any particular dataset
• Simulated datasets are far too easy to analyze
Performance comparison:
228 taxon x 4811 nucleotide dataset

Several GARLI runs 100’s worse
ML tree inference software

Some of the most used (alphabetically): GARLI, PAUP*, PHYML, RAxML

For small datasets (< 50 taxa), all of the ML tree inference programs perform well

For large datasets (hundreds of sequences):
 • PAUP* is very rigorous, but slowest
 • RAxML is generally the fastest
 • GARLI often has a slight edge over RAxML in optimality (although often more variability)

RAxML is very efficient for huge datasets (1000+ sequences)
ExaML is the best tool for really huge datasets
ML tree inference software

NOTE: There can be substantial differences in which program performs best depending on the specific dataset!

If the model you need is implemented in multiple software packages, you should use as many of the software tools as you can.
Search strategies in GARLI

Multiple search replicates must ALWAYS be done

If variable results across search replicates seen:
 • Make changes to improve the search
 • and/or do more search replicates
Search repeatability and multiple replicates
Search repeatability and multiple replicates
Search difficulty

On average:
 • More sequences = worse
 • More characters (signal) = better

parsimony informative sites better indicator of signal than total # of sites
Tuning search intensity

Tradeoff between search intensity and runtimes

Not always a direct relationship between search intensity and solution optimality

Given a certain amount of time, how can we best use it?
Balancing search intensity and runtimes

Per run, more likely to find global optimum

May be more likely to find global optimum within H hours

H hours

3 thorough searches

6 fast searches
Practical search recommendations

Search repeatability is an indicator of how analyses are going (much like convergence of independent MCMC runs)

Saturating the search space (lots of searches) may be better than very long searches

On some large datasets, unlikely to find the same tree twice
How else can I speed up/improve searches?

Eliminate identical sequences!

Constrained tree searches won’t help (in GARLI)

Starting tree
 • Providing a decent (potentially unresolved) starting tree can help on large datasets
Bootstrapping

• The ML tree is just a point estimate
• How much confidence should we have that the groups recovered are not just an artifact of having a small sampling of characters?
The bootstrap

(unknown) true value of θ

(unknown) true distribution

\Rightarrow

estimate of θ

empirical distribution of sample
The bootstrap

(unknown) true value of θ → empirical distribution of sample

(unknown) true distribution

Bootstrap replicates

Distribution of estimates of parameters

Slide from Joe Felsenstein
The bootstrap for phylogenies

Original Data

Sample same number of sites, with replacement

Bootstrap sample #1

Sample same number of sites, with replacement

Bootstrap sample #2

\(T^{(1)} \)

\(T^{(2)} \)

\(\hat{T} \)

Slide from Joe Felsenstein

(and so on)
The majority-rule consensus tree

Trees:

How many times each partition of species is found:

- AE I BCDF: 4
- ACE I BDF: 3
- ACEF I BD: 1
- AC I BDEF: 1
- AEF I BCD: 1
- ADEF I BC: 2
- ABCE I DF: 3

Slide from Joe Felsenstein
From Hasegawa’s analysis of 232 sites D-loop
Bootstrapping cartoons

The mechanics of bootstrapping:
- http://phylo.bio.ku.edu/mephytis/boot-sample.html

The effect of sample size on bootstrap support:
- http://phylo.bio.ku.edu/mephytis/bootstrap.html
Bootstrapping for branch support

- Typically a few hundred bootstrap, pseudoreplicate datasets are produced.

- Less thorough searching is faster, but will usually artificially lower bootstrap proportions (BP). However, Anisimova et al. (2011) report that RAxML’s rapid bootstrap algorithm may inflate BP.

- “Rogue” taxa can lower support for many splits – you do not have to use the majority-rule consensus tree to summarize bootstrap confidence statements.
Bootstrapping in GARLI?

GARLI can run multiple search replicates per bootstrap reweighting, with the best scoring tree saved.

More intense searches add up quickly when bootstrapping.

Find fastest settings that give consistent results on full data, use those for bootstrap searches.
Evolutionary models

GARLI is geared toward model flexibility and rigorous parameter estimation

Model types
• Any GTR submodel for nucleotides
• Various common amino acid models
• Simple codon models
• Non-sequence data (M_k and M_{k_y})
• Partitioned models
• Indel models (unreleased)
How/when to partition

PartitionFinder may prove to be a great approach to partitioned model selection

Smaller subsets increase sampling error, lead to parameter estimation difficulties and model breakdown

Over-partitioning may have serious consequences in ML inference, less in Bayesian
Non-bifurcating trees

GARLI returns trees with polytomies when branches have an optimal length of zero, but some programs do not.

This can become very important in low divergence phylogenomic studies.
Assorted GARLI features

Single data file may be analyzed at the nucleotide, amino acid and codon levels without making changes to it.

Multithreaded version for multiple CPU cores

MPI version simplifies bootstrapping on clusters.

Full checkpointing

Topological constraints (positive, negative, backbone)
Other assorted GARLI features

Specification and fixation of model parameter values

Site-likelihood output for all models including partitioned, for input into CONSEL, etc.

Ancestral state reconstruction for all models

Eventually: Beagle GPU version
Gap (indel) models
Using gap characters

GARLI implements two models appropriate for use on gap characters in *fixed alignments*

DIMM model based on Rivas and Eddy (2008)
- Real model of insertion-deletion process
- Non-reversible, dollo (one insert, multiple delete)

Variant of Mk_v (Lewis, 2001) model (no full gap columns)
- Allows many gap-base transitions
Fixed alignment analysis options

gapped alignment

ignore gaps, e.g. GTR
(the usual)
Fixed alignment analysis options

- **gapped alignment**
 - Ignore gaps, e.g. GTR (the usual)

- **5-state approach**
 - (e.g., Rivas and Eddy)
Fixed alignment analysis options

- **Gapped alignment**
 - Ignore gaps, e.g., GTR (the usual)
 - Use partitioned model
 - "gapcode" matrix
- **5-state approach** (e.g., Rivas and Eddy 2008)
- **GTR** (or M_k)
Gap model accuracy – 64 taxa, true alignments

single site indels

![Graph showing error rates for single site indels across different tree depths and deletion + insertion rates.](image)

multi-site indels

![Graph showing error rates for multi-site indels across different tree depths and deletion + insertion rates.](image)
Gap model accuracy – 64 taxa, estimated alignments

MAFFT alignment

PRANK NJ-F Alignment
Part of the problem: innocuous alignment errors

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>boylliiMVZ148929</td>
<td>C G C</td>
</tr>
<tr>
<td>luteiventris_MT</td>
<td>C G C</td>
</tr>
<tr>
<td>muscosaMVZ149006</td>
<td>C G C</td>
</tr>
<tr>
<td>cascadaeMVZ148946</td>
<td>C G C</td>
</tr>
<tr>
<td>temporariaDMH84R1</td>
<td>C G T C</td>
</tr>
<tr>
<td>sylvaticaMVZ13742</td>
<td>T G C</td>
</tr>
<tr>
<td>sylvaticaDMH84R43</td>
<td>T G C</td>
</tr>
<tr>
<td>septentriionales</td>
<td>T G C</td>
</tr>
<tr>
<td>catesbianaDMH84R2</td>
<td>T G C</td>
</tr>
<tr>
<td>virgatipesMVZ1759</td>
<td>T G C</td>
</tr>
<tr>
<td>palmipesVenAMNH</td>
<td>C G C</td>
</tr>
<tr>
<td>palmipesEcuKU20442</td>
<td>C G C</td>
</tr>
<tr>
<td>Sp_1_ecuadorQCA</td>
<td>C G C</td>
</tr>
<tr>
<td>bwanaQCAZ13964</td>
<td>C G C</td>
</tr>
<tr>
<td>julianiTNHC60324</td>
<td>C G C</td>
</tr>
<tr>
<td>vaillantiKU195299</td>
<td>C G C</td>
</tr>
<tr>
<td>sierramadrensisKU</td>
<td>C G T</td>
</tr>
</tbody>
</table>
Innocuous alignment errors?
Innocuous alignment errors?

- GTR – no events, little effect
Innocuous alignment errors?

- GTR – no events, little effect
- Mk_v – 2 events, moderate effect
Innocuous alignment errors?

- GTR – no events, little effect
- Mk_v – 2 events, moderate effect
- DIMM – 5 deletions! strong effect (Dependent on tree size!!)
Conclusions: gap models

Indel events can provide useful signal \textit{if} properly modeled

BUT, without correct column homology they can do more evil than good
Summary

• For >15 sequences, an unfathomably large number of possible trees are possible.
• We have to rely on heuristics that are not guaranteed to find the actual (“global”) optimal solution.
• We have control on how thorough our searches are
• You should conduct many searches to look for evidence that your tree searching problem is difficult.
• GARLI, RAxML, ExaML, PhyML and PAUP* are the most commonly used ML tree searching for large datasets
Computer exercises