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Good:	
•About	4,000	species	
•Mul7ple	nuclear	and	
			mitochondrial	genes	

But	worrisome:	
•81%	missing	data	
•Biases	in	missing	data	
(most	taxa	only	have	
fragments	of	mtDNA)	

How	do	biases	in	missing	
data	affect	our	models?	
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Tree	conflicts	with	
morphology,	which	
places	iguanians	
as	the	sister	group	

of	remaining	
squamates.	

How	confident	
should	we	be	
in	this	tree?	
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All	the	arguments	
between	morphologists	

and	molecular	systema7sts	
concern	branches	in	this	

part	of	the	tree.		

Are	our	models	good	enough	
to	solve	problems	like	this,	

with	these	data?	
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All	the	arguments	
between	morphologists	

and	molecular	systema7sts	
concern	branches	in	this	

part	of	the	tree.		

What	about	our	evolu7onary		
inferences	from	these	trees?	



Figure	from	Wright	et	al.,	2015	



Data	from	Pyron	et	al.,	2014;	Figure	from	Wright	et	al.,	2015	

•Lots	of	missing	data	
•Highly	complex	solu7on	space	
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Propor7on	of	viviparous	taxa	sampled	

Best	tree	so	far	(improvement	of	>83,796	ln-L	units)	

Figure	from	Wright	et	al.,	2015	
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Ethics	of	Data	Presenta/on	and	
Analysis	

•  Assume	you	analyze	your	data	with	mul7ple	
models,	methods,	or	parameter	se^ngs:	

Exci7ng,	surprising	
result	(=publica7on		
in	Science	or	Nature!)	

All	the	methods,	models,	
and	parameter	se^ngs	

you	examined	
(or	should	have	examined)	

What	do	you	publish?	
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Ethics	of	Data	Presenta/on	and	
Analysis	

•  All	data,	method	descrip7ons,	scripts,	and	
programs	must	be	publicly	available	in	a	way	
that	all	your	analyses	can	be	repeated,	
checked,	and	extended	
– Not	just	sequences	in	GenBank	and	a	statement	
that	you	used	a	par7cular	program	for	analysis!	

–  Include	alignments,	parameter	se^ngs,	scripts	
with	program	se^ngs,	and	informa7on	on	the	
range	of	methods,	models,	and	parameter	se^ngs	
examined.	



Ethics	of	Data	Presenta/on	and	
Analysis	

•  Where	can	you	put	all	this	informa7on?	
– Most	journals	allow	online	Supplementary	
Informa7on	

–  There	may	be	discipline	specific	data	repositories	
(such	as	TreeBase	for	phylogene7c	analyses;	hJp://
hJp://treebase.org)	

–  Public,	archival	databases	such	as	Dryad,	a	digital	data	
repository	(hJp://datadryad.org/)	

–  Individual	websites	are	not	the	best	solu7on,	since	
long-term	access	and	archiving	are	serious	problems	



Conclusions 1 - confidence on trees

1. Non-parametric bootstrapping: useful for assessing sampling

error, but a little hard to interpret precisely.

• Susko’s aBP gives 1− aBP ≈ P -value for the hypothesis

that a recovered branch is not present in the true tree.

2. “How should we assign a P -value to tree hypothesis?” is

surprisingly complicated.

• Kishino-Hasegawa (KH-Test) if testing 2 (a priori) trees.

• Shimodaira’s approximately unbiased (AU-Test) for sets of

trees.

• Parametric bootstrapping (can simulate under complex

models)



Conclusions 2 - confidence about evo. hypotheses

If H0 is about the evolution of a trait:

1. P -value must consider uncertainty of the tree:

• can be large P over confidence set of trees.

• Bayesian methods enable prior predictive or posterior

predictive P -values.



Conclusions 3 - simulate your own null distributions

1. In phylogenetics we often have to simulate data to

approximate P -values

2. Designing the simulations requires care to make a convincing

argument.

We have some parametric bootstrapping labs on the course wiki:

https://molevol.mbl.edu/index.php/ParametricBootstrappingLab

next slide by Landis

https://molevol.mbl.edu/index.php/ParametricBootstrappingLab
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Reasons phylogenetic inference might be wrong

1. Systematic error – Our inference method might

not be sophisticated enough

2. Random error – We might not have enough data

– we are misled by sampling error.
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The bootstrap for phylogenies

Original
Data

sites

Bootstrap
sample
#1

Bootstrap
sample

#2

sample same number
of sites, with replacement

sample same number
of sites, with replacement

(and so on)

T
^

T(1)

T(2)

Slide from Joe Felsenstein



The majority-rule consensus tr ee
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From Hasegawa’s analysis of 232 sites D-loop



http://phylo.bio.ku.edu/mephytis/boot-sample.html

http://phylo.bio.ku.edu/mephytis/parsimony.html

http://phylo.bio.ku.edu/mephytis/bootstrap.html



Bootstrapping for branch support

• Typically a few hundred bootstrap, pseudoreplicate datasets

are produced.

• Less thorough searching is faster, but will usually artificially

lower bootstrap proportions (BP). However, Anisimova et al.

(2011) report that RAxML’s rapid bootstrap algorithm may

inflate BP.

• “Rogue” taxa can lower support for many splits – you do not

have to use the majority-rule consensus tree to summarize

bootstrap confidence statements; See also (Lemoine et al.,

2017)



Bootstrap proportions have been characterized as

providing:

• a measure of repeatability,

• an estimate of the probability that the tree is

correct (and bootstrapping has been criticized as

being too conservative in this context),

• the P-value for a tree or clade



Frequentist hypothesis testing: coin flipping example

N = 100 and h = 60

Can we reject the fair coin hypothesis? H0 : Pr(heads) = 0.5

The “recipe” is:

1. Formulate null (H0) and alternative (HA) hypotheses.

2. Choose an acceptable Type-I error rate (significance level)

3. Choose a test statistic: fH= fraction of heads in sample.

fH = 0.6

4. Characterize the null distribution of the test statistic

5. Calculate the P -value: The probability of a test statistic

value more extreme than fH arising even if H0 is true.

6. Reject H0 if P -value is ≤ your Type I error rate.
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Null distribution
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Making similar plots for tree inference is hard.

• Our parameter space is trees and branch lengths.

• Our data is a matrix of characters.

• It is hard to put these objects in the same space. You can

do this “pattern frequency space”.

Some cartoons of projections of this space are posted at:
http://phylo.bio.ku.edu/slides/pattern-freq-space-cartoons.pdf



coin flipping

N = 100 and H = 60

Can we reject the hypothesis of a fair coin?

We can use simulation to generate the null distribution (we

could actually use the binomial distribution to analytically solve

this one)...



A simulation of the null distribution of the # heads
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We discussed how bootstrapping gives us a sense of the

variability ofour estimate

It can also give a tail probability for Pr(f
(boot)
H ≤ 0.5)

Amazingly (for many applications):

Pr(f̂H ≥ 0.6 | null is true) ≈ Pr(f
(boot)
H ≤ 0.5)

In other words, the P -value is approximate by the fraction of

bootstrap replicates consistent with the null.



Distribution of the # heads in bootstrap resampled datasets
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Pr(p(boot) ≤ 0.5) ≈ 0.027

BP = frac. of p(boot) ≥ 0.5

BP ≈ 0.973

P -value ≈ 1−BP



A simulation of the null distribution of the # heads
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• When you decide between trees, the boundaries between tree

hypotheses can be curved

• When the boundary of the hypothesis space is curved, 1 -

BP can be a poor approximation of the P -value. – Efron

et al. (1996)



• Efron et al. (1996) proposed a computationally expensive

multi-level bootstrap (which has not been widely used).

• Shimodaira (2002) used the same theoretical framework to

devise a (more feasible) Approximately Unbiased (AU) test

of topologies.

– Multiple scales of bootstrap resampling (80% of characters,

90%, 100%, 110%. . .) are used to detect and correct for

curvature of the boundary.

– Implemented in the new versions of PAUP∗



Susko (2010) adjusted BP – aBP

• Susko agrees with curvature arguments of Efron et al. (1996)

and Shimodaira (2002), but points out that they ignore the

sharp point in parameter space around the polytomy.

• He correct bootstrap proportions: 1 − aBP accurately

estimates the P -value.

• The method uses the multivariate normal distributions the

based on calculations about the curvature of the likelihood

surface.

• You need to perform a different correction when you know

the candidate tree a priori versus when you are putting BP

on the ML tree.

• BP may not be conservative when you correct for selection

bias.
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Conclusions – bootstrapping

1. Non-parametric bootstrapping proportions help us see which

branches have so little support that they could be plausibly

explained by sampling error.

2. BPs are a little hard to interpret precisely.

3. Susko has and adjustment (“aBP“) so that 1− aBP ≈ P -

value for the hypothesis that a recovered branch is not

present in the true tree.



Can we test trees using the LRT?
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1. Should we calculate the LRT as:

δi = 2
[
lnL(t = t̂, Ti | X)− lnL(t = 0, Ti | X)

]

2. And can we use the χ2
1 distribution to

get the critical value for δ?
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1. Should we calculate the LRT as:

δi = 2
[
lnL(t = t̂, Ti | X)− lnL(t = 0, Ti | X)

]

No. t = 0 might not yield the best

alternative lnL

2. And can we use the χ2
1 distribution to

get the critical value for δ ?

No. Constraining parameters

at boundaries leads to a mixture

such as: 1
2χ

2
0 + 1

2χ
2
1

See Ota et al. (2000).
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Can we test trees using the LRT?

No, tree hypotheses
are not nested!



aLRT of Anisimova and Gascuel (2006)

• For a branch j, calculate δ†j as twice the difference in lnL

between the optimal tree (which has the branch) and the

best NNI neighbor.

• This is very fast.

• They argue that the null distribution for each LRT around

the polytomy follows a 1
2χ

2
0 + 1

2χ
2
1 distribution

• The introduce Bonferroni-correction appropriate for

correcting for the selection of the best of the three

resolutions.

• They find aLRT to be accurate and powerful in simulations,

but Anisimova et al. (2011) report that it rejects too often

and is sensitive to model violation.



aLRT = 2 [ln `1 − lnL(T2 | X)]

`1 = L(T1 | X)

Image from Anisimova and Gascuel (2006)



aBayes Anisimova et al. (2011)

aBayes(T1 | X) =
Pr(X | T1)

Pr(X | T1) + Pr(X | T2) + Pr(X | T3)

Simulation studies of Anisimova et al. (2011) show it to have

the best power of the methods that do not have inflated

probability of falsely rejecting the null.

It is sensitive to model violation.

This is similar to “likelihood-mapping” of Strimmer and von

Haeseler (1997)



coin flipping example (again, for inspiration)

N = 100 and H = 60

Can we reject the hypothesis of a fair coin?

We can use simulation to generate the null distribution (we

could actually use the binomial distribution to analytically solve

this one)...



A simulation of the null distribution of the # heads
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The simplest phylogenetic test would compare two trees

Null: If we had no sampling error (infinite data) T1

and T2 would explain the data equally well.

Test Statistic:

δ(T1, T2 | X) = 2 [lnL(T1 | X)− lnL(T2 | X)]

Expectation under null:

EH0 [δ(T1, T2 | X)] = 0



Using 3000 sites of mtDNA sequence for 5 primates

T1 is ((chimp, gorilla), human)
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Difference in lnL across sites.
Total lnL(T1) − lnL(T2) = −1.58134 
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Scatterplot of site lnL on 2 trees.
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Using 3000 sites of mtDNA sequence for 5 primates

T1 is ((chimp, gorilla), human) lnL(T1 | X) = −7363.296

T2 is ((chimp, human), gorilla) lnL(T2 | X) = −7361.707

δ(T1, T2 | X) = −3.18 E(δ)

0.0 1.0 2.0-2.0 -1.0-3.0 3.0

δ(T1, T2 | X)



To get the P -value, we need to know the probability:

Pr
(∣∣δ(T1, T2 | X)

∣∣ ≥ 3.18
∣∣∣H0 is true

)

δ(T1, T2 | X) = −3.18 −δ(T1, T2 | X) = 3.18

← →
E(δ)

0.0 1.0 2.0-2.0 -1.0-3.0 3.0

δ(T1, T2 | X)



KH Test

1. Examine the difference in lnL for each site:

δ(T1, T2 | Xi) for site i.

2. Note that the total difference is simply a sum:

δ(T1, T2 | X) =

M∑

i=1

δ(T1, T2 | Xi)

3. The variance of δ(T1, T2 | X) will be a function of

the variance in “site” δ(T1, T2 | Xi) values.



δ(T1, T2 | Xi) for each site, i.
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KH Test - the variance of δ(T1, T2 | X)

To approximate variance of δ(T1, T2 | X) under the

null, we could:

1. use assumptions of Normality (by appealing to the

Central Limit Theorem1). Or

2. use bootstrapping to generate a cloud of pseudo-

replicate δ(T1, T2 | X∗) values, and look at their

variance.

1Susko (2014) recently showed that this is flawed and too conservative.



δ for many (RELL) bootstrapped replicates of the data
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The (RELL) bootstrapped sample of statistics.
Is this the null distribution for our δ test statistic?
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KH Test - ‘centering’

EH0 [δ(T1, T2 | X)] = 0

Bootstrapping gives us a reasonable guess of the

variance under H0

Subtracting the mean of the bootstrapped δ(T1, T2 |
X∗) values gives the null distribution.

For each of the j bootstrap replicates, we treat

δ(T1, T2 | X∗j)− δ̄(T1, T2 | X∗)

as draws from the null distribution.



δ(T1, T2 | X(j))− δ̄(T1, T2 | X∗)
for many (RELL) bootstrapped replicates of the data
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Approximate null distribution with

tails (absolute value ≥ 3.18) shown
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P−value = 0.46

δ(T1, T2 | X∗)− δ̄(T1, T2 | X∗)



Other ways to assess the null distribution of the LR test
statistic

• Bootstrapping then centering LR, and

• Using normality assumptions.

are both clever and cute solutions.

They are too conservative (Susko, 2014) - more

complicated calculations from the Normal [KHns] or

mixtures of χ2 distributions [chi-bar].

They do not match the null distribution under any

model of sequence evolution.



Mini-summary

• δ(T1, T2 | X) = 2 [lnL(T1 | X)− lnL(T2 | X)] is

a powerful statistic for discrimination between

trees.

• We can assess confidence by considering the

variance in signal between different characters.

• Bootstrapping helps us assess the variance in lnL

that we would expect to result from sampling error.



Scenario

1. A (presumably evil) competing lab scoops you by publishing a tree, T1,
for your favorite group of organisms.

2. You have just collected a new dataset for the group, and your ML
estimate of the best tree, T2, differ’s from T1.

3. A KH Test shows that your data significantly prefer T2 over T1.

4. You write a (presumably scathing) response article.

Should a Systematic Biology publish your response?



What if start out with only one hypothesized tree, and
we want to compare it to the ML tree?

The KH Test is NOT appropriate in this context (see Goldman

et al., 2000, for discussion of this point)

Multiple Comparisons: lots of trees increases the variance of

δ(T̂ , T1 | X)

Selection bias: Picking the ML tree to serve as one of the

hypotheses invalidates the centering procedure of the KH test.



Using the ML tree in your test introduces selection bias

Even when the H0 is true, we do not expect

2
[
lnL(T̂ )− lnL(T1)

]
= 0

Imagine a competition in which a large number of equally skilled

people compete, and you compare the score of one competitor

against the highest scorer.



Experiment: 70 people each flip a fair coin 100 times and

count # heads.

h1 − h2
Null dist.: difference in # heads any two competitors

Diff # heads
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Experiment: 70 people each flip a fair coin 100 times and

count # heads.

h1 − h2 max(h)− h1
Null dist.: difference in # heads any two competitors

Diff # heads
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Null dist.: difference highest − random competitor
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Shimodaira and Hasegawa proposed the SH test which
deals the “selection bias” introduced by using the ML
tree in your test

Requires set of candidate trees - these must not depend on

the dataset to be analyzed.

H0: each tree in the candidate set is as good as the other trees.

The test makes worst-case assumptions - it is conservative.

AU test is less conservative (still needs a candidate set)



real data test stat commands

null fitting commands

real test stat

fit null



real data test stat commands

null fitting commands

real test stat

fit null

simulated data



real data test stat commands

null fitting commands

real test stat

fit null

simulated data null distrib.



real data test stat commands

null fitting commands

real test stat

fit null

simulated data null distrib. P -value



Parametric bootstrapping to generate the null
distribution for the LR statistic

1. find the best tree and model pair that are consistent with

the null,

2. Simulate many datasets under the parameters of that model,

3. Calculate δ(j) = 2
[
lnL(T̂ (j) | X(j))− lnL(T̂

(j)
0 | X(j))

]

for each simulated dataset.

• the (j) is just an index for the simulated dataset,

• T̂ (j)
0 is the tree under the null hypothesis for simulation

replicate j



Parametric bootstrapping

This procedure is often referred to as SOWH test (in that form,

the null tree is specified a priori).

Huelsenbeck et al. (1996) describes how to use the approach

as a test for monophyly.

Intuitive and powerful, but not robust to model violation

(Buckley, 2002).

Can be done manually2 or via SOWHAT by Church et al.

(2015). Optional demo here.

Susko (2014): collapse optimize null tree with 0-length

contraints for the branch in question (to avoid rejecting too

often)
2instructions in https://molevol.mbl.edu/index.php/ParametricBootstrappingLab



Null distribution of the difference in number of steps under GTR+I+G
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Null distribution of the difference in number of steps under JC
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We often don’t want to test tree topologies

• If we are conducting a “comparative method” we have to

consider phylogenetic history,

• ideally we would integrate out the uncertainty in the

phylogeny

Tree is a “nuisance parameter”



You have to think about what sources of error are
most relevant for your data!



Errors modeling multiple hits

Assembly + asc. bias errors

Alignment errorsParalogy errors

                                                  Errors from deep coalescence

No s
ign

al

NowLong ago
Time



Errors modeling multiple hits

Assembly + asc. bias errors

Alignment errorsParalogy errors

                                                  Errors from deep coalescence
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Horizontal gene transfer



Open Tree of Life slides

https://mtholder.github.io/reveal/biol-428-systematics-guest-lecture-2018.html#/4
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