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Chapter 1

Introduction to Programming

1.1 On becoming a card-carrying computational biologist

As an evolutionary biologist interested in programming, you are joining a group with a proud
history that extends back to the beginnings of the computer era. It is largely unacknowledged that
the field of computational biology was founded by biologists, and not just by any flavor of biologist,
but by evolutionary biologists. In fact, Sir Ronald A. Fisher — yes, that R.A. Fisher who was a
founder of modern population genetics as well as an architect of modern frequentist statistics — is
likely the first person to have used a computer to solve a problem in biology. Fisher (1950) used an
EDSAC computer in Cambridge to compute the expected allele frequencies in a cline. Just a little
more than a decade later, in 1963, his former postdoc and student, Luca Cavalli-Sforza and Anthony
Edwards, respectively, wrote some of the earliest programs to estimate phylogeny, executing the
programs on an Italian-made Olivetti Elea 6001 computer (Edwards, 2009). The next generation
of evolutionary computational biologists came of age, scientifically at least, in the 1970s and 1980s
and included such luminaries as Joe Felsenstein, Elizabeth Thompson, Steve Farris, Masatoshi
Nei, David Swofford, and the brothers, Wayne and David Maddison. They addressed all sorts of
problems in evolutionary biology, but mainly concentrated in population genetics and phylogeny
estimation which posed problems that could not be solved analytically, but were amenable to
numerical solution using a computer. Although these researchers did not necessarily all get along,
it was at this time that a community consisting of evolutionary biologists who took a computational
approach in their research developed. As a rule, this group of researchers was generous in sharing
their knowledge with others; they passed on their knowledge, either through formal mentorship or
through more informal means (which typically involved some consumption of beer), to the next
generation which includes too many biologists to list here. This author, in fact, learned many of
the tricks of the trade for dealing with trees in computer memory from David Swofford1. This book
is my attempt to pay it forward by passing some of the tricks of the trade on to you, a member of
the next generation of evolutionary computational biologists. My hope is that my means of paying
it forward, in the form of this book, will be as instructive to you as David Swofford’s tutelage was
for me.

1Swofford is a strong proponent of the informal method for passing on programming knowledge.
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2 CHAPTER 1. INTRODUCTION TO PROGRAMMING

1.2 What is programming?

Programing is the act of writing instructions for a computer to perform. The instructions are
written in a language, called a programming language of which there are many to choose from.
Typically, the instructions are simply written on a plain text file which is then read by a computer
program called a ‘compiler’ which compiles the code, turning your instructions into a form that
can be read directly by the computer. The coding language is a necessity as it is readable by
ordinary humans whereas the compiled code, which is gobbled up by the computer and executed
instruction-by-instruction, is much more difficult to comprehend. The coding language also helps
insure portability of the ideas expressed in your code to various computer platforms. Machine-
readable code — the output of a compiler — is machine specific, so the executable code for one
computer and operating system will not necessarily work on another. The code, however, can be
ported from computer to computer and compiled for each.

1.3 Choosing a programming language

Programming is difficult. Turning a concept into an algorithm that is implemented in code is not an
easy task, for one. But, for the beginner, there are several hurdles that must be cleared before the
interesting problem of algorithm development can even be tackled. You need to master, or begin
the process of mastering, the programs that allow you to program. I will discuss these programs,
called Integrated Developer Environments (IDEs), in the next chapter. The first decision to make,
however, is which programming language to use. All programming languages have similarities, and
as you become more experienced, you will notice these similarities and realize that learning two
different computer languages, such as C++ and Fortran, is much easier than learning two spoken
languages such as Spanish and German. But, these similarities won’t become apparent until you
have one language, at least, under your belt. Which language should you invest your precious time
in learning?

Popular computer languages include Java, Python, JavaScript, C, C++, C#, PHP, Perl, Swift,
R, Rust, and Ruby, to name a few. More experienced programmers can be helpful in guiding you
in choosing a first language, but you should beware. Programmers often have very strong opinions
about the merits (and demerits) of various languages. In this book I chose to use C++ to illustrate
ideas. C++ is not a bad choice for a first language to learn. You could do worse. It is widely used
and powerful.

Importantly, C++ is a compiled language. “What is a compiled language?,” you ask. A
compiled language is one that must be run through a compiler, which produces instructions specific
to the target machine. Some languages, such as the popular Python, are interpreted languages.
The instructions for an interpreted language are not directly executed by the target machine, but
rather are read and executed by another program, cleverly called the ‘Interpreter.’ Interpreted
languages are often easier to run and use, but typically do not run as fast as compiled languages.

A C++ programmer can also take advantage of the code written by others to solve various
problems, an advantage C++ shares with other languages. This code is referred to as a library.
Sometimes, they are precompiled. The important point is this: you can integrate the library into
your program and use the functionality of the library to solve your own problems. This saves you
a lot of time, allowing you to concentrate on the aspects of your problem that are truly unique.
Moreover, libraries can often be of very high quality. The routines you take advantage of in a library
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are likely better-written than anything you (or I) could write. An example of a C++ library often
used by scientists is the Boost Library.

1.4 Goals

This book is not meant to provide you with an in depth review of C++ and programming. Rather,
my goal is to get you started with programming in evolutionary biology. The exercises presented
in each chapter build on each other. The idea is that by working through the exercises, you will
not only learn a lot about programming, but better understand many of the algorithms that are
used by evolutionary biologists.

As I mentioned, above, programming is hard. You should not expect to understand every
concept on the first go. Be persistent! Don’t give up! If you approach programming with a positive
attitude, you’ll find yourself enjoying the process.

Good luck and happy programming!
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Chapter 2

IDE Misery

2.1 What is an IDE?

When I was a graduate student, my advisor bought me a powerful (for the time) and exceedingly
expensive Sun SPARC workstation. It was the first computer I had used that ran a Unix operating
system. For the first two weeks, until I figured out how to install and operate the compiler, this
workstation was nothing more than an expensive time piece. The process of working out how
to install and use the compiler was, for me, a frustrating experience. However, my experience
was not unique; the first, and worst, experience for a beginning programmer is learning how to
actually compile and run a program for the first time. Fortunately, it is much easier to get started
programming today. Why? Integrated Developer Environments (IDEs).

Remember that writing, compiling, and running a program involve the following steps:

00000000  cf fa ed fe 07 00 00 01  03 00 00 80 02 00 00 00

00000010  11 00 00 00 30 06 00 00  85 80 21 00 00 00 00 00

00000020  19 00 00 00 48 00 00 00  5f 5f 50 41 47 45 5a 45

00000030  52 4f 00 00 00 00 00 00  00 00 00 00 00 00 00 00

00000040  00 00 00 00 01 00 00 00  00 00 00 00 00 00 00 00

00000050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00

00000060  00 00 00 00 00 00 00 00  19 00 00 00 c8 02 00 00

00000070  5f 5f 54 45 58 54 00 00  00 00 00 00 00 00 00 00

Text file with

code
Compiler Executable

Entering the code into a text file can be accomplished using any text editor, even Microsoft Word
as long as the file is saved as a plain text file. And, compiling the code can be performed directly, by
running the compiler from the command line. IDEs, however, simplify both tasks by wrapping the
code generation and compilation into one program. The text editor for an IDE can be customized
to suit your style, or the style of your programming team. Colors can be used to indicate different
aspects of the code, such as control statements, variables, and comments. The IDE also manages
the source code files, of which there may be many, that constitute the program. The compiler is
run from the IDE. Typically, the settings for the compiler can be set from the IDE. Finally, IDEs
have built in debuggers, which can help you track down errors in your code.

5



6 CHAPTER 2. IDE MISERY

There are many IDEs that you can use. In this book, I will assume that you are using Xcode,
if you are using a computer running the MacOS. If you are using a computer running the Windows
operating system, I would recommend installing CLion, Eclipse, or Visual Studio.

2.2 Getting started with Xcode

XCode is an IDE developed by Apple and given away for free, which is a pretty good deal in
my opinion. You can download XCode through the App Store application on your Mac. Search
for XCode in the App Store search field, then click on the ‘Download’ button. XCode is a large
program, so be patient while the program downloads to your computer.

Launch XCode after you download it. Select New > Project from the File Menu. You will
see the following window:

Select Command Line Tool and click on Next. This leads to the following window:
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Name the project. Here, I cleverly named the project Project01. You can name your project
whatever you like. However, I will be referring to this program as ‘Project01’ throughout this
book, so you can simplify your life by following my lead here. You might consider entering your
name instead of my name in the Organization Name field. Similarly, enter something sensible for
Organization Identifier. Most importantly, make certain that C++ is selected as the Language.
Then select Next to continue to the next (and, thankfully, last) window that allows you to save
your project to a specific location on your computer:

Do not choose to Create Git repository on my Mac. I’ll explain source code repositories, such
as Git, in a later chapter. You should see the following after you save your project:

Congratulations! You have just ‘written’ your first computer program. How? XCode fills in a
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bit of starter code for you. If you want to, you can compile and run this code by clicking on the
‘play’ button ( ) in the top-left corner of the window.

Play with the toggles, indicated by the red ellipses until you get the window to look like the one,
above. The window, above, contains just the information you need to write the code (the portion
in the top window) and see the results of the program running (the portion in the lower window).

2.3 Getting started with CLion

2.4 Getting started with Eclipse



Chapter 3

Hello World: the World’s Most

Boring Program

3.1 Hello World: Boring, but informative

If your IDE has not already done so, enter the following text in the main.cpp file for the first
program you set up in your IDE, called ‘Program01’:

#include <iostream>

int main(int argc, char* argv[]) {

std::cout << "Hello, World!" << std::endl;

return 0;

}

The code you have entered implements the well-known ‘Hello, World’ program. Almost every
introductory programming book starts with some variant of this program. What does the program
do? It simply prints the phrase, “Hello, World!” to the standard output on your computer. (In
Xcode, the output is directed to a window in the lower portion of the viewer. In Eclipse, the
standard output is directed to ...) Clearly, this is a very boring program. You would think we
could do better. (We can.) That said, the Hello World program illustrates a few points.

3.2 main is a function

Mathematicians use functions all of the time. For example, consider the function called f(x):

f(x) = x2

9
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This function takes as input the variable x and outputs the square of x, or x2. Programmers also
make extensive use of functions. In fact, the Hello World program has one function, called main.
The outline of the main function is:

int main(int argc, char* argv[]) {

}

The main function takes as input arguments two variables which are listed in the parentheses (int
argc, char* argv[], which will be discussed in more detail later). The main function also returns
a value, the type of which is an integer (called int here). (Note, we will discuss variables extensively
in the next chapter.) The body of the function is the space between the two curly brackets.

How would we define a function that squares a value, like the simple example function we gave
above in which f(x) = x2? The following would accomplish this:

double squareFunction(double x) {

return x * x;

}

The function is named squareFunction. The function takes as an argument the value double x.
What does this mean? The word double refers to the variable type. We won’t go into great detail
about double variables here, but for now it suffices that double variables can hold real numbers,
such as 3.14. The function also returns a value, which is the square of the value that is passed into
the function as an argument. (Here, x * x is equivalent to x× x).

3.3 Every C++, and C, program starts with main

You now have a basic idea of how functions are defined in C++, and C for that matter. The
pattern is

<return type> <function name>(<input variable(s)>) {

}

with the body of the function being the commands that are typed between the curly brackets.

Every C++ program begins execution at a function called main. Every C++ program must
contain one, and only one main function. If you ever happen to be examining someone else’s code,
look for the main function. Everything starts there.

3.4 Include statements expose the built in functions of the lan-

guage

Change line 1 of the program by typing two backslashes in front of the statement, #include

<iostream>. The line should look like
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//#include <iostream>

The double slash denotes comments in your code. Everything after the // on that line is not
code that is read by the compiler, but only there to help you and others understand the code. So,
the // in front of the #include ‘comments out’ that line of code. What happened when you did
this? In Xcode, I get the following error pop up in the IDE, next to that line: ‘Use of undeclared

identifier ‘std’.’ What is the include statement doing that is so important that leaving it out
breaks the program?

Any command that starts with the pound sign, #, is called a ‘compiler directive.’ The compiler
directive is read by the preprocessor of the compiler, which reads the code before compiling, re-
solving any of the directives. The #include <iostream> directive tells the compiler to look for a
file called iostream and include that file in the project.

On my computer, iostream is a physical file located in the Xcode program bundle. To under-
stand what is going on here, I’m going to back up a few steps and give you a more general view
of a programming language. Imagine the following scenario: two different companies are writing
C++ compilers. Company 1 decides that they really don’t like how C++ uses the word double

when referring to a variable that will hold a real number. Sensibly enough, they decide that in
their compiler, whenever you want to declare a variable named x that will hold a real number, you
will type

real x;

Meanwhile, the programming team from Company 2, which happens to be German, decides like
Company 1 that double is not a sensible name for a real number. But, being German, they decide
that in their compiler program, that variables that hold real numbers will be declared

zahl x;

Both companies have made seemingly sensible decisions. What could go wrong?
It turns out that a lot could go wrong if compiler coders made arbitrary decisions like the ones

I described. Imagine that you wrote a computer program in C++ that is read by and compiled on
Company 1’s compiler. You give your code to your friend, who happens to have bought Company
2’s compiler. Your friend would not be able to compile your code without the hassle of changing
all of the ‘reals’ to ‘zahls.’ Yikes! Or, I should say, “Heiliger Strohsack!”

To prevent such chaos, writers of compilers adhere to a standardized version of the C++ lan-
guage. The language standards, of course, are maintained by a committee, in this case the Inter-
national Organization for Standardization (ISO). A C++ compiler must closely adhere to the ISO
guidelines in order to be ISO compliant. Variables that store real numbers must be called double,
not real or zahl. And, certain built-in functions must not only be implemented, but must be
implemented in certain files that can be included to expose that functionality. The line that begins
std::cout outputs text to the console. std::cout is implemented in the iostream file, which
must be included if you use std::cout in your code.
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Several standards for the C++ language have been released by ISO. The most recent is C++17,
which was released in December 2017.

Throughout this book, you will see examples of new functions that require different files to
be included (e.g., if you want to take the natural log of a number, using the log function, you
need to include the cmath file). Why didn’t the C++ standard just include all of the functions
automatically? Why include functionality piecemeal? There are several reasons. For one, by
including only those files necessary for the bit of code you are writing, compiling that code is faster.
More generally, good programmers follow the principle of including only the minimum necessary
to compile code. When you garden, you only bring the tool(s) necessary to prune your shrubs, or
weed. You don’t bring the entire contents of your gardening shed. Similarly, in programming, we
only include the tools necessary for the portion of code expressed in the file.

You will see two examples of #include directives:

#include <file>

#include "file"

The first is used to expose the built-in functionality of the C++ language. Files that you will often
include are iostream, iomanip, cmath, time, and fstream, among others. The second include,
using the quotation marks, is used to include files from your program project. You will see that
you do not write all of the code in a single text file. Rather, the code that constitutes your program
is scattered among files. A large program, such as RevBayes (Höhna et al., 2016), can include
thousands of files!

3.5 Please explain std::cout << "Hello, World!" << std::endl

The main body of the ‘Hello, World’ program does two things: print the text, “Hello, World!”
and then return the number 0 to the operating system. Output is handled by cout, which stands
for ‘console out.’ The command, std::cout opens an output stream, directed to the console. A
stream is an abstraction used for input and output in C++.

C++ uses the abstraction of a ‘stream’ to control input and output to a device. The input and
output can be from the console or to a file or to some object. A stream is nothing but a sequence of
characters. One can insert characters into the stream with the << operator. One can also extract
characters from the stream with the >> operator.

The command, std::cout opens a stream to the console. The next command, << "Hello,

World!" inserts into the stream the string, ‘Hello, World!” A string is a series of characters, that
can include spaces. A string is defined by the characters between the quotation marks. The last
command, << std::endl inserts into the stream an end-of-line character. (If you are familiar
with those ancient devices called typewriters, you can think of the end-of-line character as being a
carriage return.)

A lot more could be said about streams here. They provide the C++ language with a flexible
way to output data and to take in data that is device independent (i.e., the C++ interface remains
the same regardless of where the stream comes from or goes to). We’ll see more of streams in later
chapters.
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3.6 Functions take arguments and return values

Earlier, I mentioned that main is a function and that the general pattern of functions is:

<return type> <function name>(<input variable(s)>) {

}

Let’s delve more deeply into what the main function is taking in as arguments and what it is
returning.

The main function takes as arguments two variables, int argc and char* argv[]. Where do
these arguments come from? In this case, argc and argv are supplied by the operating system
when the program is executed. int argc is a variable called ‘argc’ which can hold an integer
value. The other variable that is provided by the operating system, ‘char* argv[],’ is a bit more
mysterious. This is an array of pointers to strings. I realize that probably made no sense, but here
is another try: char* argv[] is a vector of memory addresses, each of which indicates the starting
address for a string.

What is contained in int argc and char* argv[]? int argc holds the number of strings
contained in argv. Rewrite your main function to look like this:

int main(int argc, char* argv[]) {

std::cout << "argc = " << argc << std::endl;

for (int i=0; i<argc; i++)

{

std::cout << "argv[" << i << "] = " << argv[i] << std::endl;

}

return 0;

}

When I run the above program, I get the following output:

argc = 1

argv[0] = /Users/johnh/Project01/DerivedData/Project01/Build/Products/Debug/Project01

Program ended with exit code: 0

The operating system is passing to the program, through the main function, information on how
the program was called. In this case, there is one argument and that argument is the path to the
executable.

On my computer, a Macintosh, I opened the terminal app and typed the path to the executable,
which is everything in the line, above, except the executable name:
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cd /Users/johnh/Project01/DerivedData/Project01/Build/Products/Debug/

If I type the unix command, ls, I see the list of files in the Debug directory: ‘Project01.’ The
executable can be run using the following command,

./Project01

which gives the following output:

argc = 1

argv[0] = ./Project01

Now, let’s have some fun. I am going to type the following the next time I execute the program,

./Project01 David Swofford had a little lamb which was named, sensibly enough, PAUP

This line produces the following output on my computer:

argc = 13

argv[0] = ./Project01

argv[1] = David

argv[2] = Swofford

argv[3] = had

argv[4] = a

argv[5] = little

argv[6] = lamb

argv[7] = which

argv[8] = was

argv[9] = named,

argv[10] = sensibly

argv[11] = enough,

argv[12] = PAUP

Note that the operating system broke up the sentence by words, separated by blank space(s).
Again, the first string that is passed to the main function is the path to the executable name. The
other strings, however, are the individual words that followed the executable name.
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You may have had experience with programs that run from the command line. Genomics
analysis often involves the use of many command-line programs, perhaps stitched together using a
language such as python. For example, ClustalW is a widely-used program that aligns nucleotide
or amino acid sequences. The user manual gives the following example of how to call ClustalW
from the command line:

clustalw2 -infile=my_data -type=protein -matrix=pam -outfile=my_aln -outorder=input

Note that the word clustalw2 is the executable name. Simply typing this word executes the
program. All of the words after clustalw2, however, are arguments that are passed into Clustal’s
main function. The programmers for Clustal read the number of arguments (argc) and the strings
argv to set the program’s state. Command line arguments passed into main using int argc and
char* argv[] are a convenient, if not particularly user-friendly, way to specify things such as input
and output files, etc.

Finally, the program returns to the operating system the number 0. It does this using the return
statement, return 0.

This concludes our discussion of the ‘Hello World’ program. Who would have thought that such
a simple program would provide so much fodder for discussion?
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Chapter 4

Variables are Fun!

4.1 The basic variable types

Modify the main function for your first project, Project01 so that it reads:

int main(int argc, char* argv[]) {

int x = 3;

std::cout << "x = " << x << std::endl;

return 0;

}

This simple program declares a variable named ‘x’ and initializes its value to x = 3. This all
occurs on one line, int x = 3. The next line prints the value of x. The output of the program
should look like:

x = 3

Program ended with exit code: 0

The single line in which we declared and initialized the variable x could have been done in two
lines, instead:

int x; // declare variable called x

x = 3; // set the value of the variable x to 3

Most programmers, when declaring a variable, will also initialize it to some value. Normally, if I
were declaring a variable like x, I would initialize its value to zero, int x = 0, so that I could rely
on it being zero. Some compilers, when you declare a variable without initializing it (e.g., int x),

17
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initialize the value to zero. Other compilers, however, do not do this and the value of the variable
will reflect the pattern of bits that happen to be at that memory address. Declaring and initializing
the variable ensures that it has a value that you can rely on. Note that I added comments to the
two lines, above; the words after the // are the comment and are not read by the compiler.

In C++, when you declare a variable, you also indicate the variable type. Here, we are declaring
the variable x to be of type int. In C++, and other languages too, int declares a variable that
can hold integers. (Remember, integers are the numbers . . . ,−3,−2,−1, 0, 1, 2, 3, . . ..)

What if you wanted to store and manipulate a real-valued number in computer memory? You
can do this with the float or double variable types. Modify the main program, again, to read:

int main(int argc, char* argv[]) {

int x = 3;

std::cout << "x = " << x << std::endl;

double y = 3.14;

std::cout << "y = " << y << std::endl;

return 0;

}

When I run this program, I get the following output:

x = 3

y = 3.14

Program ended with exit code: 0

The other standard variable types are summarized in the following table:

Variable Type Example

int Integers -1, -100, 0, 314, 10001
unsigned int Natural Numbers 0, 1, 2, . . .
float Real Numbers -4.23, 10.01e+4, 10203.0001
double Real Numbers Same as with floats
char Characters c, a, B, Z
bool Boolean true, false

There are a few other variable types that you might come across, but the table summarizes the
main ones you will likely ever use.

4.2 Variables take up space

When you declare a variable, such as int x = 0, the operating system sets aside enough space on
your computer’s memory to represent the variable. Interestingly, C++ allows you to see how much
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space is set aside and even where the variable resides in memory. Rewrite main in Project01 to
read:

int main(int argc, char* argv[]) {

int x = 0;

std::cout << "x’s value = " << x << std::endl;

std::cout << "x’s address = " << &x << std::endl;

std::cout << "x’s size = " << sizeof(int) << std::endl;

return 0;

}

When I run this program, I get the following output:

x’s value = 0

x’s address = 0x7ffeefbff57c

x’s size = 4

Program ended with exit code: 0

The first line of code, int x = 0, simply declares and initializes an integer variable called x. The
next line of code should also make sense to you; it simply prints out the value of x, which because
you initialized the variable at the same time that you declared it, is predictably zero. It’s on the
next line of code which prints out the memory address of x, std::cout << "x’s address = " <<

&x << std::endl, where things get interesting. You can get the memory address of a variable by
putting the ampersand symbol, ‘&,’ in front of the variable’s name. So, &x represents the memory
address of the variable x. You can see that when I ran the program on my computer, the memory
address is reported to be 0x7ffeefbff57c.

The memory address deserves explanation. First of all, the memory on your computer is arrayed
in bytes, each of which has an address. The address is either a 32 bit or 64 bit number. On my
computer, the addresses are 64 bits and output as hexadecimal numbers. The number representing
the memory address for x, 0x7ffeefbff57c, is in hexadecimal format1 It’s unlikely that when you
ran the program that your computer put the value x in the same place in memory as when I ran
the program on my computer.

1Converting between number bases is not too difficult. Remember that a base-10 number is in the following
format: . . . × 104 + × 103 + × 102 + × 101 + × 100 + × 10−1 . . . where the blanks are filled with the
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, or, 9 depending on the number that is represented. For example, the number 1066 would
be 1× 103 + 0× 102 + 6× 101 + 6× 100. A binary (base two) number works in a similar fashion, but the format is
. . . ×24+ ×23+ ×22+ ×21+ ×20+ ×2−1 . . ., with the blanks filled in with the digits 0 or 1. A hexadecimal
number is in base 16. The format for the numbers is . . . ×164+ ×163+ ×162+ ×161+ ×160+ ×16−1 . . .,
with the sixteen digits being 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, and F , the letters standing for 10, 11, 12, 13, 14,
and 15 (in base-10).
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The last line of the modified program prints the size of the variable, x. You can see that an
integer takes up four bytes on my computer. In fact, the first byte will reside at the address that was
printed out (0x7ffeefbff57c). The next three bytes will be adjacent to the first, at the locations
0x7ffeefbff57d, 0x7ffeefbff57e, and 0x7ffeefbff57f.

Of course, the memory address of a variable can change each time the program is run. The
amount of space that is set aside for each variable type, however, is constant. On my computer,
the standard variable types take up the following amount of space:

Variable Number Bytes

int 4
unsigned int 4
float 4
double 8
char 1
bool 1

4.3 Variables in computers have limits

We now know that when we declare a variable to be of type int, that the compiler sets aside four
bytes of space somewhere on your memory card. What is the largest and smallest value that can
be stored in computer memory as an int?

Each byte of memory consists of eight ‘bits,’ each of which has two states, on (1) or off (1). The
binary representation of the first ten positive integers is

Number Binary Representation

0 00000000000000000000000000000000

1 00000000000000000000000000000001

2 00000000000000000000000000000010

3 00000000000000000000000000000011

4 00000000000000000000000000000100

5 00000000000000000000000000000101

6 00000000000000000000000000000110

7 00000000000000000000000000000111

8 00000000000000000000000000001000

9 00000000000000000000000000001001

10 00000000000000000000000000001010

Note that most of the bits, the leading ones, are not being used for our int variable. In fact, if
we knew that the largest number we wanted to hold was 10, we could get away with one byte (8
bits). There is a variable type called ‘short int’ which only takes up two bytes of memory. In this
case, in which we know that the maximum size of the integer we want to hold is 10 (in base-10),
we could use a short int instead, thereby saving two byes of memory. If we were programming in
the 1970s, we might go ahead and do just this. In the 1970s, a good computer had only thousands
of bytes of memory. Today, we have billions of bytes of memory to play with. Most programmers
do not worry about saving a few bytes. Rather, they worry more about places in the code that a
lot of memory is allocated (where a lot of memory might be millions of bytes, or megabytes, are
allocated).
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Imagine we had two slots to represent a base-10 number. What is the largest value that can
be represented with two digits? The answer: 99 (or 102 − 1). Similarly, the largest binary number
that can be represented with 32 bits (or slots) is 11111111111111111111111111111111, or 232−1.
For the int variable type, however, one of the 32 bits is used to indicate whether the number
is positive or negative. Therefore, the largest value that can be stored using an int variable is
1031 − 1 = 2147483647 whereas the smallest value is −2147483648. The actual story is a bit more
complicated than I just made out, but you see the point: if we wanted to store a number larger
than about 2.1 billion, we are going to run into problems. In fact, if we attempt to do so, we will
get an overflow error from the computer. (The opposite problem — attempting to hold the value
of a number that is too small — is called an ‘underflow error.’)

Note that you can get information on the limits of numerical representation from functions
defined in the limits include file.

Similarly, we cannot represent the real numbers with complete accuracy. Try the following
experiment; rewrite your project code so that it reads:

#include <iomanip>

#include <iostream>

int main(int argc, char* argv[]) {

float x = 0.1;

double y = 0.1;

std::cout << std::fixed << std::setprecision(50) << "x = " << x << std::endl;

std::cout << std::fixed << std::setprecision(50) << "y = " << y << std::endl;

return 0;

}

The output should look like this:

x = 0.10000000149011611938476562500000000000000000000000

y = 0.10000000000000000555111512312578270211815834045410

Program ended with exit code: 0

Note that neither number is exactly equal to 0.1, though both are quite close to that value. The
reason is straight-forward: computers cannot represent every real number with complete precision,
but rather approximates any particular number as well as it can. The representation of 0.1 is better
when we use a double variable than when we use the float type. This makes sense because the
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internal representation of the real number for the double type uses twice as many bytes as the
float type.

You should always be concerned about numerical accuracy when doing computations in evolu-
tionary biology. Some of the more obscure output from many programs, such as reporting the log
of a probability, are done to avoid underflow.

4.4 You can use a variable to hold a memory address

As I pointed out earlier, we can get the memory address of a variable by putting an ampersand
in front of the variable in computer code. This seems to be a neat trick, but otherwise useless.
After all, why should we care about the location of the variable in memory? This is especially true
because we, as the programmer, do not even control where the variable is to reside.

It turns out that knowing the memory address is quite important. If we know where a variable
resides in memory, we can manipulate that variable. Moreover, other parts of your code, such as
the functions you code, also have a memory address when the program is executed. If we know
where a function resides in computer memory, we can also manipulate it.

What if we want to remember the memory address of a variable? We can make another variable
that will hold the memory address. Such a variable is called a ‘pointer’ in the computer science
lingo. Rewrite your little program so that the main function now reads:

#include <iostream>

int main(int argc, char* argv[]) {

int x = 0;

int* xPtr = &x;

std::cout << "x = " << x << std::endl;

std::cout << "&x = " << &x << std::endl;

std::cout << "xPtr = " << xPtr << std::endl;

std::cout << "&xPtr = " << &xPtr << std::endl;

std::cout << "int size = " << sizeof(int) << std::endl;

std::cout << "int* size = " << sizeof(int*) << std::endl;

return 0;

}

When I run this program on my computer, I get the following output:
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x = 0

&x = 0x7ffeefbff56c

xPtr = 0x7ffeefbff56c

&xPtr = 0x7ffeefbff560

int size = 4

int* size = 8

Program ended with exit code: 0

We declare and initialize two variables in the code. The first should look familiar to you by now.
We simply declare a variable called x to be of type int and set its value to zero (int x = 0). The
second line is new. Here, we declare a pointer variable of type int*. The asterisk indicates that
the variable is a pointer. In fact, it is a variable that can hold the memory address of an int. We
also initialize the pointer variable to be equal to the memory address of x.

Confusingly, different programmers will put the asterisk, which indicates that the variable will
hold a memory address, in different places. Compilers will accept the following as equivalent:

int* xPtr = &x;

int * xPtr = &x;

int *xPtr = &x;

It seems the asterisk can attach itself to the variable type (here int), to the variable name, or even
stay in between the two like a baseball player caught in a pickle. I follow the convention of having
the asterisk cling to the variable type.

Two of the lines display the same memory address:

&x = 0x7ffeefbff56c

xPtr = 0x7ffeefbff56c

This makes perfect sense because we set the value of int* to be the memory address of x. The
next line simply shows that the variable named xPtr also has a memory address. After all, it is a
variable! You will note that the pointer variable takes up eight bytes of memory.

What if, for some reason, we wanted to remember the memory address of the variable xPtr?
We could do this by declaring another variable to hold the memory address. The big question here
is what would the variable type be? Clearly it is a pointer, but it is a pointer to a variable that is
itself a pointer. The answer is to append another asterisk to the variable type, resulting in:

int** anotherDamnPointer = &xPtr;

The variable, anotherDamnPointer, can also hold a memory address, but only for variables of type
int*. You should feel confident enough to modify the program to see that a variable of type int**
also takes up eight bytes of memory. All pointer variables take up the same amount of memory
(eight bytes) regardless of the type of variable it holds the memory address of.

4.5 Dereferencing pointers

I mentioned that if you know the address of a variable, that you can manipulate it. You can do
this by ‘dereferencing’ the pointer. Here’s an example using a re-written main function:
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#include <iostream>

int main(int argc, char* argv[]) {

int x = 0;

int* xPtr = &x;

std::cout << "x = " << x << std::endl;

*xPtr = 3;

std::cout << "x = " << x << std::endl;

return 0;

}

When I run this program, I get the following output:

x = 0

x = 3

Program ended with exit code: 0

Note that I didn’t change the value of x directly by simply typing x = 3. Rather, I changed
its value indirectly using *xPtr = 3. Essentially, the program changes the value at the memory
address stored in the pointer variable, xPtr.

4.6 Arrays

Often, a problem can best be solved by using a vector of variables. As an example, in phylogenetics,
we use vectors of double variables to hold conditional probabilities at different points on a tree.

Vectors, called ‘arrays’ in C++ and other languages, can be declared by appending square
brackets with the number of variables in the array to the end of the variable name:

int x[10]; // declares an array of 10 ints

int* xPtr[10]; // declares an array of 10 int pointers

double y[1000]; // declares an array of 1000 double variables

The value for each element can be accessed, again, using the square brackets. Implement the
following code in your program:
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#include <iostream>

int main(int argc, char* argv[]) {

int x[100];

for (int i=0; i<100; i++)

x[i] = i;

for (int i=0; i<100; i++)

std::cout << "x[" << i <<"] = " << x[i] << std::endl;

return 0;

}

This little program does three things. First, we declare a vector of 100 int variables, called x.
Second, we initialize each of the 100 variables to be its position in the vector. We do this using
a loop. This is the second time you have seen a loop in this book. Here, we use the for loop.
(There are also do and while loops, but for loops are probably the most frequently used in C++.)
The for loop has three conditions, separated by semicolons. The first, int i=0, declares a counter
variable named i and initializes its value to zero. The second, i<100, indicates the condition for
the variable i. As long as the condition is met, we will continue through the loop. Here, we will
continue through the loop while the variable i is less than 100. The third part of the for loop
increments the value of i each time we pass through the loop. The value is incremented at the end
of the loop. The i++ is short-hand for the statement i = i + 1. So, the values of i that will be
visited in the for loop are 0, 1, 2, . . . , 99. The for loop could have been replaced by the following
100 lines of code:

#include <iostream>

int main(int argc, char* argv[]) {

int x[100];

x[0] = 0;

x[1] = 1;

x[2] = 2;

x[3] = 3;

x[4] = 4;
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// 90 lines of similar code!

x[95] = 95;

x[96] = 96;

x[97] = 97;

x[98] = 98;

x[99] = 99;

for (int i=0; i<100; i++)

std::cout << "x[" << i <<"] = " << x[i] << std::endl;

return 0;

}

Mercifully, I did not write out the full 100 lines of code that would be necessary to accomplish what
the two lines of code in the for loop accomplished.

After initialization, the third and final part of the little C++ program prints out each value of
the vector, x. It does this using another for loop.

The values of the array are adjacent to one another in computer memory. You can see this if
you modify the line in the code in which the values are printed to read:

#include <iostream>

int main(int argc, char* argv[]) {

int x[100];

for (int i=0; i<100; i++)

x[i] = i;

for (int i=0; i<100; i++)

std::cout << "x[" << i <<"] = " << x[i] << " (" << &x[i] << ")" << std::endl;

return 0;

}

When I run the program, the first ten lines of output read:

x[0] = 0 (0x7ffeefbff420)

x[1] = 1 (0x7ffeefbff424)

x[2] = 2 (0x7ffeefbff428)
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x[3] = 3 (0x7ffeefbff42c)

x[4] = 4 (0x7ffeefbff430)

x[5] = 5 (0x7ffeefbff434)

x[6] = 6 (0x7ffeefbff438)

x[7] = 7 (0x7ffeefbff43c)

x[8] = 8 (0x7ffeefbff440)

x[9] = 9 (0x7ffeefbff444)

x[10] = 10 (0x7ffeefbff448)

Note that each int variable in the array is four bytes away from the previous variable.

The above example assumes that you know the size of the vector before compiling the program.
Here, for whatever reason, we knew we would need 100 integer values in the array. However, what
would you do if you didn’t know the size of the array before compiling the program? Perhaps for
some input to the program, you will need 50 integer values in the vector but for other input you
will need 1000. One possible solution is to simply declare the variable to be of a sufficient size. For
example, you could write,

int x[1000];

if you knew that the maximum size of the vector would be 1000 int variables. This is an inelegant
and inefficient solution to the problem. What if we only need 50 variables? In this case, we would
never use 950 of the variables that were set aside when the program is run. The problem is even
messier if we cannot predict how many variables we will need when the program is executed, which
is the usual case in evolutionary biology in which the size of the problems to be analyzed can vary
dramatically.

Fortunately, there is a simple solution. We dynamically allocate the memory that we will need.
Rewrite the main function to read:

#include <iostream>

int main(int argc, char* argv[]) {

int numInts = 0;

std::cout << "How many ints: ";

std::cin >> numInts;

int* x = NULL;

if (numInts > 0)

x = new int[numInts];

else
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{

std::cout << "Too few ints!" << std::endl;

exit(1);

}

for (int i=0; i<numInts; i++)

x[i] = i;

for (int i=0; i<numInts; i++)

std::cout << "x[" << i <<"] = " << x[i] << " (" << &x[i] << ")" << std::endl;

delete [] x;

return 0;

}

When I run this program, I am prompted to enter a number. I entered ‘5’ and got the following
output:

How many ints: 5

x[0] = 0 (0x10292c5a0)

x[1] = 1 (0x10292c5a4)

x[2] = 2 (0x10292c5a8)

x[3] = 3 (0x10292c5ac)

x[4] = 4 (0x10292c5b0)

Program ended with exit code: 0

The simple program does several things. First, it declares a variable called numInts and initial-
izes its value to zero. Second, the program prints out How many ints: to the standard console. At
this point, nothing happens until the user enters (hopefully) a number. There is no checking that
the user actually enters a number. Ideally, we would check that the entry made by the user is valid.
In any case, we proceed to declare another variable, this time an int* (int pointer) variable and
initialize its value at the same time we declare it. We initialize its value to be NULL. (In C++, we
use NULL if you want to initialize a pointer variable so that it does not contain an address.) If the
variable numInts is greater than zero, then we go ahead and allocate the desired number of integer
variables using the new function. If numInts is not greater than 0, then we print an error and bail
out of the program using the exit function. Finally, the program initialized the integer variables in
the array and prints the value and memory address of each. At the end of the program, we free the
memory that was allocated. We do this with the delete [] function. Every time we dynamically
allocate memory using the new function, we should remember to free that memory when it is no
longer needed using the delete function.
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For fun, I ran the program again, this time entering ‘1000000’ when prompted to enter how
many int variables I wanted. The output, minus 990,000 lines, was as follows:

How many ints: 1000000

x[0] = 0 (0x103400000)

x[1] = 1 (0x103400004)

x[2] = 2 (0x103400008)

x[3] = 3 (0x10340000c)

x[4] = 4 (0x103400010)

x[5] = 5 (0x103400014)

[many lines not shown]

x[999995] = 999995 (0x1037d08ec)

x[999996] = 999996 (0x1037d08f0)

x[999997] = 999997 (0x1037d08f4)

x[999998] = 999998 (0x1037d08f8)

x[999999] = 999999 (0x1037d08fc)

Program ended with exit code: 0
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Chapter 5

Conjunction Function

5.1 Making your own functions

Computer programs use functions all the time. Functions promote code reuse (why type the same
code repeatedly?) and help clarify the logic of the code. So far, we have seen only one function,
called main. Remember, every C++ program must have a function called main. In this chapter,
we will explore functions.

Modify your program to read:

#include <iostream>

// prototype the new function

int sumTwoInts(int x, int y);

int main(int argc, char* argv[]) {

int var1 = 3;

int var2 = 5;

int sum = sumTwoInts(var1, var2);

std::cout << "sum = " << sum << std::endl;

return 0;

}

int sumTwoInts(int x, int y) {

return x + y;

31
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}

The output should look like this:

sum = 8

Program ended with exit code: 0

This program defines a new function, called sumTwoInts. The function is implemented after
the main function, though it could have been implemented before it (the order doesn’t matter).
The function sumTwoInts is quite simple; it just returns the sum of the two int variables that are
passed to it. The only mysterious portion of this new program is the statement before the main

function:

// prototype the new function

int sumTwoInts(int x, int y);

This statement provides the compiler a heads up that a user-defined function, called sumTwoInts

will be used in this file. Besides providing the compiler the name of the function, it informs the
compiler that this function will take two int variables and return an int.

Making new functions is quite easy! Now, let’s explore some important details of functions.

5.2 You can pass variables to a function by value or by reference

One of the more confusing aspects of functions is what happens to variables when they are passed
into the function. To explore functions, try the following:

#include <iostream>

// prototype the new function

void changeMyVariable(int x);

int main(int argc, char* argv[]) {

int var = 0;

std::cout << "var(before) = " << var << std::endl;

changeMyVariable(var);
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std::cout << "var(after) = " << var << std::endl;

return 0;

}

void changeMyVariable(int x) {

x = 3;

}

Examine this program closely. We define a new function called changeMyVariable. This
function takes as an argument a int variable and returns nothing (hence the void as the return
statement). The implementation of the changeMyVariable function is straight forward. We change
the value of x to be equal to 3.

The program prints the value of the variable declared in main twice: once before and once after
the changeMyVariable function is called. What do you predict the value of var will be after the
changeMyVariable function is called?

Many new programmers would predict that the value of var will be 3 after the changeMyVariable
function is called. After all, the variable is passed into the function and its value changed there,
right? Wrong! Run the program and see for yourself. Your output should look like:

var(before) = 0

var(after) = 0

Program ended with exit code: 0

Clearly, the value of var did not change after the changeMyVariable function was called.

The value of var does not change after the changeMyVariable function is called for the simple
reason that the value is copied to a new location when it is passed into the changeMyVariable

function. This is called passing by value. It is more clear when we print the memory address of
var in the main function and x in the changeMyVariable function:

#include <iostream>

// prototype the new function

void changeMyVariable(int x);
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int main(int argc, char* argv[]) {

int var = 0;

std::cout << "var’s address: " << &var << std::endl;

std::cout << "var(before) = " << var << std::endl;

changeMyVariable(var);

std::cout << "var(after) = " << var << std::endl;

return 0;

}

void changeMyVariable(int x) {

std::cout << "x’s address: " << &x << std::endl;

x = 3;

}

When I run the program, I got the following output:

var’s address: 0x7ffeefbff67c

var(before) = 0

x’s address: 0x7ffeefbff63c

var(after) = 0

Program ended with exit code: 0

You can see from the output that var and x are different int variables residing at different memory
addresses. When the function changeMyVariable changes the value of x, it is not changing the
value of var. Rather, x’s initial value is whatever var’s value was. Check this by changing the code
to read:

#include <iostream>

// prototype the new function

void changeMyVariable(int x);
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int main(int argc, char* argv[]) {

int var = 11;

std::cout << "var(before) = " << var << std::endl;

changeMyVariable(var);

std::cout << "var(after) = " << var << std::endl;

return 0;

}

void changeMyVariable(int x) {

std::cout << "x(before): " << x << std::endl;

x = 3;

std::cout << "x(after): " << x << std::endl;

}

The output from this modified program clarifies what is going on:

var(before) = 11

x(before): 11

x(after): 3

var(after) = 11

Program ended with exit code: 0

The variable var is initialized to 11. This value is passed to the function changeMyVariable where
the new variable, x within the scope of that function, is initialized to 11. It is then changed to the
value 3 and the program exits.

It seems that the changeMyVariable function is not acting as we intended. The idea was that
we would pass an integer variable into that function and it would change its value to 3. Instead,
we get a copy of the variable we want to change and set its value to 3.

How do we change the value of the variable var that was instantiated in the main function?
There are two ways to do this.

First, we could pass in the address of var and have the changeMyVariable change the value
indirectly, by dereferencing the pointer and changing the value at var’s address. Let’s rewrite the
program yet again:
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#include <iostream>

// prototype the new function

void changeMyVariable(int* x);

int main(int argc, char* argv[]) {

int var = 0;

std::cout << "var(before) = " << var << std::endl;

changeMyVariable(&var);

std::cout << "var(after) = " << var << std::endl;

return 0;

}

void changeMyVariable(int* x) {

(*x) = 3;

}

The output for this program looks like:

var(before) = 0

var(after) = 3

Program ended with exit code: 0

Finally, we have managed to change the value of var, that was declared in main, in the changeMyVariable
function. However, we had to do this indirectly. Keep in mind that the variable that is passed into
the changeMyVariable function is a new variable, in this case an int* pointer variable. Its value
is initialized when we pass the memory address of var to the changeMyVariable function when we
call it in main.

The second way to change the variable is to pass it by reference. We change the program to
read:

#include <iostream>
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// prototype the new function

void changeMyVariable(int& x);

int main(int argc, char* argv[]) {

int var = 0;

std::cout << "var’s address: " << &var << std::endl;

std::cout << "var(before) = " << var << std::endl;

changeMyVariable(var);

std::cout << "var(after) = " << var << std::endl;

return 0;

}

void changeMyVariable(int& x) {

std::cout << "x’s address: " << &x << std::endl;

x = 3;

}

The program gives the following output:

var’s address: 0x7ffeefbff67c

var(before) = 0

x’s address: 0x7ffeefbff67c

var(after) = 3

Program ended with exit code: 0

Note that var (in main) and x (in changeMyVariable) are the same variable. After all, they both
are int variables at the same memory address. Passing by reference is an alternative method for
changing the value of a variable in another function.

5.3 Variables have a scope

Variables have a scope, which is the portion of the code in which they can be accessed, changed,
etc.. The scope of a variable is defined between { and }. Rewrite your code as follows:



38 CHAPTER 5. CONJUNCTION FUNCTION

#include <iostream>

int main(int argc, char* argv[]) {

{

int x = 0;

std::cout << "x = " << x << std::endl;

}

return 0;

}

This program should run and give the output x = 0. Now, let’s make a very minor change to
the program by moving one of the curly brackets:

#include <iostream>

int main(int argc, char* argv[]) {

{

int x = 0;

}

std::cout << "x = " << x << std::endl;

return 0;

}

When I do this, XCode gives me one warning and one error. The error reads, “Use of

undeclared identifier ’x’.” Normally, the scope of x would be the entire main function (or,
at least, the portion of the main function after it was declared). However, in this little program, I
restricted x’s scope to be between another set of curly braces. When I attempted to use x outside
of its scope, in the std::cout statement, the compiler gives me an emphatic “No.”

We could have declared the variable outside of the function:

#include <iostream>
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int x; // global x

int main(int argc, char* argv[]) {

{

x = 0;

}

std::cout << "x = " << x << std::endl;

return 0;

}

Now, the variable x is available to any function in that file. It is said to be a ‘global variable.’
Declaring variables to be global in scope is generally not a great idea.
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Chapter 6

Classes

6.1 Into the deep end of the pool

In this chapter, we are going to make a random number generator. As it turns out, computers can’t
generate randomness on their own. All they can do is logical operations and math. So, how do we
make randomness from one of the most deterministic tools made by man? The answer is that we
don’t. Rather, we can generate sequences of numbers that in many respects can behave randomly.
To be more correct, I will modify my original statement: In this chapter, we are going to make a
pseudorandom number generator.

The sequence of pseudorandom numbers is completely determined by the initial value, called
the seed. If we initialize the pseudorandom number generator with the same seed, we will get the
same sequence out. If the sequence of random numbers revisits the value for the seed, it will repeat.
The period of the pseudorandom number is the length of this repeat. Good pseudorandom number
generators will have a very long period. Moreover, the values will be difficult to distinguish from
truly random numbers. For example, they shouldn’t be correlated with previous values.

You should be wary of using pseudorandom number generators. There is an entire sub-discipline
in computer science dedicated to developing better pseudorandom numbers.

We will implement a simple linear congruential generator described by Park and Miller (1988).
It is not a state-of-the-art pseudorandom number generator, but it will give you an idea of how
apparent randomness can be generated on a computer. It should be good enough for the applications
in this book.

A linear congruential generator starts with an initial value of an int variable called the seed.
The seed value is changed sequentially using the following equation:

si+1 = (a× si + c) mod m

where si is the ith value of the seed, a is the multiplier, c is the increment, and m is the modulus.
Good pseudorandom number generators that use the linear congruential generator choose a, c, and
m wisely. The seed value for a good choice of a, c, and m will bounce between 1 and the maximum
value possible in a way that has the appearance of randomness.

6.2 Making your first class

You are now going to make your first C++ class. We will discuss what a class is as we develop it.

41
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Make a new project naming it Project02. You can follow the instructions in the second chapter
of this book to do this. At the end, you should have a single file, main.cpp, that has the main

function.

Once you have made the new project, you are ready to add a new class. If you are using XCode,
select File > New > File from the File menu item. This will lead to the following windows:

Choose C++ File and click on Next. In the following window, name the new class RandomVariable
and click Next. This leads to one final window. Simply click Create to make your new class files.
In the end, your project should look something like this (if you are using XCode):

You created two files, RandomVariable.hpp and RandomVariable.cpp. You can see them both
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listed with the main.cpp file. When you compile the program, all the files are compiled to form
the executable.

Select the file RandomVariable.hpp. Add text to that file so it looks like the following:

#ifndef RandomVariable_hpp

#define RandomVariable_hpp

class RandomVariable {

double uniformRv(void);

int seed;

};

#endif

Next, select the RandomVariable.cpp file. Add text to this file, too:

#include "RandomVariable.hpp"

double RandomVariable::uniformRv(void) {

return 0.0;

}

Congratulations! You just made your first class. Eventually, it will be a very cool class, able to
generate pseudorandom numbers. We will build to that point, slowly.

What have we done, so far? We defined a class called RandomVariable. This class has one int
variable called seed and one function called uniformRv associated with it.

6.3 Why do we split the class into .hpp and .cpp files?

One of the more confusing aspects of programming is the fact that a typical program is not im-
plemented in a single file, but rather in many files. As mentioned earlier, the source code for a
program like RevBayes is distributed among several thousand files! Enjoy your good fortune; so
far, this program has only three (main.cpp, RandomVariable.hpp, and RandomVariable.cpp).
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The class definition was split into two files. Generally speaking, classes are split into two. The
RandomVariable.hpp file is called the header file. It contains the outline of the class including
the variables that are associated with each instance of the class and the functions that are associ-
ated with the class. Again, in this class, we only have one variable (int seed) and one function
uniformRv). The class definition is simple:

class RandomVariable {

};

We include the variables and functions that will be associated with each instance of this class
between the curly brackets. You will also note that there are several compiler directives associated
with the file:

#ifndef RandomVariable_hpp

#define RandomVariable_hpp

#endif

The class definition occurs between the compiler directives. The compiler directives ensure that
the class is only defined once. Remember, our source code might be distributed among many files.
Any file that uses the capabilities of our RandomVariable class will include the file at the top, using
the include directive:

#include "RandomVariable.hpp"

Even though we may include the file in dozens (or more) files, we only want the class to be defined
once; hence, the compiler directives that guard against this. Alternatively, we could guard against
multiple inclusion using the once guard:

#pragma once

class RandomVariable {

double uniformRv(void);

int seed;

};

Which you use is a matter of personal preference.

If the header file outlines the data and functions associated with each instance of our RandomVariable
class, the implementation file (RandomVariable.cpp) represents the guts of the class. It’s in the
implementation file that we actually implement the functions. In our implementation file, we only
implement the uniformRv function:

double RandomVariable::uniformRv(void) {

return 0.0;

}
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Eventually, this function will generate a pseudorandom number between 0 and 1. For now, it simply
returns the value 0. Note that we include the header file that contains the class definition at the
head (or top) of this file.

One last thing about the implementation file. You will have noted that the implementation of
the uniformRv function had RandomVariable:: before the function name. This is C++’s way of
indicating that this function definition is part of the RandomVariable class.

Why do we spread the implementation of the class across two files? One idea prevalent in object
oriented programming is that the implementation of a class should be hidden from those who use
the class. Imagine I wrote a class with functionality that you wanted in your program. You could
include the two files I wrote in your project and, voilà, your program now has the capabilities from
my class. In order to use that functionality in some file of your program, you would include the
header file from my class. The header file of my class should contain all of the information you need
to use the functionality of the class. By examining the functions that are available, for example,
you would see how to ‘interface’ with my code. (Hopefully, I would also include useful comments
to guide you.) Although the ideal of separating the interface and the implementation is usually not
purely implemented in any program that I am aware of, it’s a nice idea.

6.4 Instantiating a class

Rewrite the main.cpp file to read:

#include <iostream>

#include "RandomVariable.hpp"

int main(int argc, char* argv[]) {

RandomVariable rv;

double u = rv.uniformRv();

std::cout << "u(0,1) = " << u << std::endl;

return 0;

}

If you do this, you should come across an error. In XCode, the error reads, “‘uniformRv’ is

a private member of ‘RandomVariable’.” What is going on? Help!

In C++, variables and functions in a class can be private or public. By default, variables and
functions are private. Because we did not indicate otherwise, the compiler assumed that both seed

and uniformRv were both private. To fix the problem, we need to go back to our class definition
in RandomVariable.hpp and insert two lines:
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#ifndef RandomVariable_hpp

#define RandomVariable_hpp

class RandomVariable {

public:

double uniformRv(void);

protected:

int seed;

};

#endif

Public variables and functions are available to other parts of the code to use. The private or
protected elements of the class, however, are only available to other members of the class. We
want other parts of the code to have the ability to get a uniform random variable from this class.
Therefore, we make the uniformRv function public. On the other hand, the variable seed is part
of the mechanism that will generate the pseudorandom numbers. We don’t want other parts of the
program to have the ability to even touch this mechanism. Hence, we hide this variable away. This
sort of compartmentalization is a useful feature of C++. In general, you should attempt to keep
functions and variables private or protected.

With the aside on public versus private/protected completed, let’s revisit our main function.
The first line of that function,

RandomVariable rv;

declares an instance of the RandomVariable class called rv. This line of code is analogous to
others you have seen, such as int x, which makes an instance of an integer variable called x. The
terminology we use when declaring instances of classes is a bit different than when we declare a
variable to be of type int. We would say that we are instantiating the RandomVariable class or
that we made an instance of the RandomVariable class. Just like other variables, our new variable
rv has a scope (the function main, in this case). You might have heard that C++ is an ‘object-
oriented’ programming language. Objects are just instances of classes. If it is important to you,
you can tell your loved ones that you just made your first object.

If you run the program, the output should look like

u(0,1) = 0

Program ended with exit code: 0

The code works. Often, I build up portions of the code just as we are doing here: incrementally.
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When you make an instance of a class, as we have in our main function, several things happened
behind the scenes that you are unaware of. First of all, when the variable was created, a function
was called that you didn’t even know about! This function is called the default constructor function.
Again, this function was created even though we never wrote a line of code. Interestingly, we can
make our own default constructor that will be called instead. Add to the implementation file,
RandomVariable.cpp, several new functions, so that the file now looks like:

#include <ctime>

#include "RandomVariable.hpp"

RandomVariable::RandomVariable(void) {

seed = (int)time(NULL);

}

RandomVariable::RandomVariable(int x) {

seed = x;

}

double RandomVariable::uniformRv(void) {

return 0.0;

}

double RandomVariable::uniformRv(double lower, double upper) {

return 0.0;

}

Modify the header file to reflect the changes you made in the implementation file:

#ifndef RandomVariable_hpp

#define RandomVariable_hpp
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class RandomVariable {

public:

RandomVariable(void);

RandomVariable(int x);

double uniformRv(void);

double uniformRv(double lower, double upper);

protected:

int seed;

};

#endif

You can test that you did everything correctly by attempting to run the program.

The default constructor has the same name as the class and does not return a variable (in fact,
it doesn’t even have the keyword void to indicate this, like normal functions that don’t return a
value). If we wanted to replicate, exactly, the default constructor that was created by the compiler,
we would simply include the following code:

RandomVariable::RandomVariable(void) {

}

Our implementation of the default constructor, however,

RandomVariable::RandomVariable(void) {

seed = (int)time(NULL);

}

sets the seed variable to be equal to the current time, obtained using the time function. The
variable that is returned by the time function is not an int variable, so we cannot directly equate
it to seed. The time function returns a variable of type time t. However, we can force the time t

variable to act as an int using the casting argument, which was the (int) before the time(NULL).
Casting can be dangerous. You can’t always sensibly cast one variable type into another. In this
case, however, you can sensibly cast a time t variable into an int variable.

Add a line of code to the default constructor, so that it now reads:
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RandomVariable::RandomVariable(void) {

seed = (int)time(NULL);

std::cout << "Default constructor. The seed equals " << seed << std::endl;

}

In order to get the code to compile, you will need to add iostream using the include compiler
directive to the RandomVariable.cpp file. When I ran the program, I obtained the following output:

Default constructor. The seed equals 1532124958

u(0,1) = 0

Program ended with exit code: 0

The important point is this: We never explicitly called the default constructor. It was called for us
when rv was created.

Constructors are obvious places to initialize variables. For our RandomVariable class, it makes
sense to initialize the seed variable when an instance of the class is created. Moreover, because
we want a different sequence of pseudorandom numbers every time we run the program, we should
initialize the seed variable to something that changes, like time. Many implementations of pseu-
dorandom number generators use the computer’s internal clock to initialize the seed.

What if we want to initialize the seed variable to some other value? We have given our program
the ability to do just this. In the code, above, we implemented a second constructor! This one,

RandomVariable::RandomVariable(int x) {

seed = x;

}

Takes an int argument and sets the seed variable to be equal to it. Add a line to this second
constructor, so it reads:

RandomVariable::RandomVariable(int x) {

seed = x;

std::cout << "Alternate constructor. The seed equals " << seed << std::endl;

}
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Now, go to the main function and rewrite it so it reads:

#include <iostream>

#include "RandomVariable.hpp"

int main(int argc, char* argv[]) {

RandomVariable rv1;

RandomVariable rv2(3);

RandomVariable rv3(1929);

RandomVariable rv4;

return 0;

}

When I ran the program, I got the following output:

Default constructor. The seed equals 1532125424

Alternate constructor. The seed equals 3

Alternate constructor. The seed equals 1929

Default constructor. The seed equals 1532125424

Program ended with exit code: 0

We made four different instances of the RandomVariable class. This means that we have four
instances of seed that were created, one for each. rv1 and rv4 were created using the default
constructor which sets the seed using the current time. Both of those objects have the same value
for the seed variable. They will produce the same sequences of pseudorandom numbers. The
computer created the four instances of RandomVariable so quickly that the time didn’t have a
chance to turn over, even by one! The other two instances of RandomVariable, rv2 and rv3 were
created using the alternative constructor that sets the seed to some value that is passed in.

One nice feature of C++ is function overloading. Different functions can have the same name,
as long as the arguments that are passed to the functions are different. In our RandomVariable

class, we see function overloading in two places: for the constructors

RandomVariable(void);

RandomVariable(int x);

and in the functions uniformRv

double uniformRv(void);

double uniformRv(double lower, double upper);
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Even though the functions have the same name, the compiler can tell them apart because the
arguments that are passed to the functions are different. The compiler can tell which function
is being called, implicitly, by examining the list of arguments that are passed to it. We were
able to indicate to the compiler which constructor we wanted to be called when the objects were
instantiated: RandomVariable rv calls the default constructor, which doesn’t take any arguments,
whereas RandomVariable rv(3) calls the alternative constructor which takes a single int as an
argument.

6.5 Implementing the uniformRv function

We will implement the pseudorandom number generator described by Park and Miller (1988).
Change the code for the uniformRv(void) function in the RandomVariable.cpp file to read:

double RandomVariable::uniformRv(void) {

int hi = seed / 127773;

int lo = seed % 127773;

int test = 16807 * lo - 2836 * hi;

if (test > 0)

seed = test;

else

seed = test + 2147483647;

return (double)(seed) / (double)2147483647;

}

The code for pseudorandom number generators is always disturbing to look at. The non-
randomness of a pseudorandom number generator sort of smacks you in the face when you see the
code. You should be feeling a little queasy at this point.

Clearly, the seed variable is changed every time the uniformRv function is called. The number
that is returned is the new value for the seed divided by its maximum possible value. We use casting,
again, to force the compiler to treat seed as a double (real-valued number) when the division occurs
in the last line. If we didn’t do this, the function would return 0 every time.

We have implemented the uniformRv(void) function, but have the uniformRv(double lower,

double upper) remaining to be implemented. Go to that function, and add the following code:
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double RandomVariable::uniformRv(double lower, double upper) {

return ( lower + uniformRv() * (upper - lower) );

}

This function uses the function that returns a uniformly-distributed random number on the
interval (0, 1) to generate a random number uniformly-distributed on the interval (Lower,Upper).

Now for some fun! Let’s test our random number generator. Modify your main function so it
reads:

#include <iostream>

#include "RandomVariable.hpp"

int main(int argc, char* argv[]) {

RandomVariable rv;

for (int i=0; i<100; i++)

{

double u = rv.uniformRv();

std::cout << i << " -- " << u << std::endl;

}

return 0;

}

When you run this program, the output should be 100 pseudorandom numbers, uniformly
distributed on the interval (0, 1).

Modify the program so that it starts with the same seed every time. Confirm that the sequence
of random numbers is the same every time the program is run.

Besides being a nifty example of function overloading, our function uniformRv(double lower,

double upper) demonstrates a commonly-used method for generating random numbers that are
not uniform(0,1) random variables. That function transforms a uniform(0,1) random number into
a uniform(lower,upper) random number. We can use the same idea to generate different types
of random variables. Here, we will make one more random variable before moving on from our
discussion of classes.
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The exponential probability distribution accurately models the waiting time until an event
occurs when that event occurs at a constant rate, λ. The exponential probability distribution is a
continuous distribution with density function, f(t) = λe−λt, for t > 0, λ > 0. How can we generate
an exponentially-distributed random number?

The idea is to transform the uniform(0,1) random variable into an exponential(λ) random
variable. We know that if we integrate over all possible values of t, that the overall probability is
one (the exponential is a probability distribution). So,

∫

∞

0
λe−λxdx = 1

The key to transforming our uniform into an exponential is to generate a uniform(0,1) random
variable called u and set the integral equal to that value:

∫ t

0
λe−λxdx = u

We can solve for t as follows:
∫ t

0
λe−λxdx = u

−e−λx
∣

∣

∣

t

0
= u

−e−λt −−e0 = u

1−−e−λt = u

e−λt = 1− u

−λt = ln(1− u)

t = −
1

λ
ln(1− u)

Here, t is an exponential(λ) random variable. It was obtained by transforming our uniform(0,1)
random variable, u. Equivalently, we could use the equation t = − 1

λ
ln(u).

Now that we have the math out of the way, let’s implement our exponential random number
generator. Add to the RandomVariable.cpp file the following function:

double RandomVariable::exponentialRv(double lambda) {

return -log(uniformRv()) / lambda;

}

You will have to do two things to get this to compile. First, include the function profile in the
header file for the class. Second, you will need to include the cmath header file in the implementation
file. (The natural log function, log, is implemented in cmath.)
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Once you have successfully implemented the exponentialRv function, play around with it.
Generate a bunch of exponentially-distributed random numbers. What is the mean of the numbers
you generated? They should be near to the expectation for the exponential, E(X) = 1/λ. Confirm
this.
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Markov chain Monte Carlo

7.1 Some theory

Markov chain Monte Carlo (MCMC) is a numerical method for approximating high-dimensional
integrals and/or summations. The method was first described by Metropolis et al. (1953) and
later modified by (Hastings, 1970)1. The algorithm that we will implement in this chapter is often
referred to as the Metropolis-Hastings algorithm.

Use of the Metropolis-Hastings algorithm was mostly restricted to the field of statistical physics,
until it was discovered by statisticians in the mid 1980s (Geman and Geman, 1984). Statisticians,
as a group, were largely unaware of the numerical method until Gelfand and Smith (1990) provided
a description of the method as a way to approximate intractable probability densities. It is fair to
say that MCMC has transformed the field of statistics, and in particular, Bayesian statistics.

Bayesian statisticians are interested in the posterior probability distribution of a parameter, θ,
which can be calculated using Bayes’s theorem as

P(θ|D) =
P(D|θ)P(θ)

P(D)

Here, P(θ|D) is the posterior probability distribution of the parameter. The posterior probability
is a conditional probability: the probability of the parameter conditioned on the observations, D.
The other factors in the equation include the likelihood [P(D|θ)], prior probability distribution of
the parameter [P(θ)], and marginal likelihood [P(D)].

How does Bayesian analysis work in practice? Consider an experiment in which a coin is
repeatedly tossed with the objective to estimate the probability that heads appears on a single toss
of the coin, a parameter we call θ. We observe x heads on n tosses of the coin. In a Bayesian
analysis, the objective is to calculate the posterior probability of the parameter, which for coin
tossing is

f(θ |x) =
f(x | θ)f(θ)

∫ 1
0 f(x | θ)f(θ) dθ

1Look at the full list of authors for the Metropolis et al. (1953) paper. If you know your U.S. history, you will
recognize E. Teller as the father of the American hydrogen bomb.
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Figure 7.1: The Beta distribution can take a variety of shapes depending on the values of the
parameters α and β. Here, (a) α = β = 1, (b) α = β = 4, and (c) α = β = 1/2.

The likelihoood, f(x | θ), is given by the binomial probability distribution,

f(x | θ) =

(

n

x

)

θx(1− θ)n−x

where the binomial coefficient is
(

n
x

)

= n!
x!(n−x)! . In addition to the likelihood function, however,

we now must also specify a prior probability distribution for the parameter, f(θ). This prior
distribution should describe the investigator’s beliefs about the hypothesis before the experiment
was performed. The problem, of course, is that different people may have different prior beliefs.
In this case, it makes sense to use a prior distribution that is flexible, allowing different people to
specify different prior probability distributions and also allowing for an easy investigation of the
sensitivity of the results to the prior assumptions. A Beta distribution is often used as a prior
probability distribution for the binomial parameter. The Beta distribution has two parameters, α
and β. Depending upon the specific values chosen for α and β, one can generate a large number of
different prior probability distributions for the parameter θ. Figure 7.1 shows several possible prior
distributions for coin tossing. Figure 7.1a shows a uniform prior distribution for the probability of
heads appearing on a single toss of a coin. In effect, a person who adopts this prior distribution
is claiming total ignorance of the dynamics of coin tossing. Figure 7.1b shows a prior distribution
for a person who has some experience tossing coins; anyone who has tossed a coin realizes that
it is impossible to predict which side will face up when tossed, but that heads appears about as
frequently as tails, suggesting more prior weight on values around θ = 0.5 than on values near
θ = 0 or θ = 1. Lastly, Figure 7.1c shows a prior distribution for a person who suspects he is being
tricked. Perhaps the coin that is being tossed is from a friend with a long history of practical jokes,
or perhaps this friend has tricked the investigator with a two-headed coin in the past. Figure 7.1c,
then, might represent the ‘trick-coin’ prior distribution.

Besides being flexible, the Beta prior probability distribution has one other admirable property;
when combined with a binomial likelihood, the posterior distribution also has a Beta probability
distribution (but with the parameters changed). Prior distributions that have this property—that
is, the posterior probability distribution has the same functional form as the prior distribution—
are called conjugate priors in the Bayesian literature. The Bayesian treatment of the coin tossing
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experiment can be summarized as follows:

Prior [f(θ), Beta] Likelihood [f(x | θ), Binomial] Posterior [f(θ |x), Beta]

Γ(α+β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1
(

n
x

)

θx(1− θ)n−x Γ(α+β+n)
Γ(α+x)Γ(β+n−x)θ

α+x−1(1− θ)β+n−x−1

[The gamma function, not to be confused with the gamma probability distribution which will
be discussed in later chapters, is defined as Γ(y) =

∫

∞

0 uy−1e−u du. Γ(n) = (n − 1)! for integer
n = 1, 2, 3, . . . and Γ(12) = π.] We started with a Beta prior distribution with parameters α and β.
We used a binomial likelihood, and after a modest amount of calculus we calculated the posterior
probability distribution, which is also a Beta distribution but with parameters α+x and β+n−x.

Figure 7.2 shows the relationship between the prior probability distribution, likelihood, and
posterior probability distribution of θ for two different cases, differing only in the number of coin
tosses. The posterior probability of a parameter is a compromise between the prior probability
and the likelihood. When the number of observations is small, as is the case for Figure 7.2a, the
posterior probability distribution is similar to the prior distribution. However, when the number
of observations is large, as is the case for Figure 7.2b, the posterior probability distribution is
dominated by the likelihood.
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Figure 7.2: As more data are collected for the coin-tossing example, the investigator’s prior opinions
play a smaller role in the conclusions. (a) The prior distribution, likelihood function, and posterior
probability density when α = β = 4, n = 10 and x = 8. (b) The prior distribution, likelihood
function, and posterior probability density when α = β = 4, n = 100 and x = 80
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