
Woods Hole 2014 - brief primer on Multiple Sequence
Alignment presented by Mark Holder

Many forms of sequence alignment are used in bioinformatics:

• Structural Alignment

• Local alignments

• Global, evolutionary alignment

– Inputs: unaligned sequences thought to be homologous over their full
length

– we often ignore events like transpositions or inversions



The goal of MSA is to introduce gaps such that:

• residues in the same column are homologous – all

descended from a residue in the common ancestor,

and

• all descendants of a residue are put in the same

column.
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Main points

• Accuracy of alignment is important.

• Pairwise alignment is tractable.

• Most MSA programs use progressive alignment:

– a series of pairwise operations.

– these algorithms are not guaranteed to return

the optimal solution.

– the criteria used are not ideal from an

evolutionary standpoint.



Main points (continued)

• Simultaneous inference of MSA and tree is the

most appropriate choice, but is computationally

demanding. See: Poisson Indel Process

(Bouchard-Côté and Jordan, 2013), Bali-Phy,

Handel, AliFritz, and POY software

• Many people cull ambiguously aligned regions.



human KRSV

chimp KRV

gorilla KSV

orang KPRV

How we align these sequences affects tree

estimation.

human KRSV human KRSV human KRSV

chimp KR-V chimp K-RV chimp KR-V

gorilla KS-V gorilla K-SV gorilla K-SV

orang KPRV orang KPRV orang KPRV



How we align affects estimation of tests about

processes of molecular evolution.

Redelings (2014) studied jointly estimating

alignments and ω.

ω is the ratio of the rate of a non-synonymous

substitution type to the rate of a synonymous

substitution type (more from Joe Bielawski).

A model with ω > 1 allows for positive, diversifying

selection.





Expressing homology detection as a bioinformatics
challenge

• The problem is recast as:

– reward matches (+ scores)

– penalize rare substitutions (– scores),

– penalize gaps (– scores),

– try to find an alignment that maximizes the total

score



Pairwise alignment

Gap penalties and a substitution matrix imply a

score for any alignment. Pairwise alignment involves

finding the alignment that maximizes this score.

• substitution matrices assign positive values to

matches or substitutions between similar residues

(for example Leucine→Isoleucine).

• infrequent types of substitutions receive negative

scores

• indels are rare, so gaps are heavily penalized

(negative scores).



BLOSUM 62 Substitution matrix

A R N D C Q E G H I L K M F P S T W Y V

A 4

R -1 5

N -2 0 6

D -2 -2 1 6

C 0 -3 -3 -3 9

Q -1 1 0 0 -3 5

E -1 0 0 2 -4 2 5

G 0 -2 0 -1 -3 -2 -2 6

H -2 0 1 -1 -3 0 0 -2 8

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

A R N D C Q E G H I L K M F P S T W Y V



Scoring an alignment with the BLOSUM 62 matrix

Pongo V D E V G G E L G R L F V V P T Q

Gorilla V E V A G D L G R L L I V Y P S R

Score 4 2 -2 0 6 -6 -3 -4 -2 -2 4 0 4 -1 7 4 1

The score for the alignment is

Dij =
∑
k

d
(k)
ij

If i indicates Pongo and j indicates Gorilla. (k) is

just an index for the column.

Dij = 12



Scoring an alignment with gaps

If we were to use a gap penalty of -8:

Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1

By introducing gaps we have improved the score:

Dij = 40



Gap Penalties

Penalizing gaps more heavily than substitutions

avoids alignments like this:

Pongo VDEVGGE-LGRLFVVPTQ

Gorilla VDEVGG-DLGRLFVVPTQ



Affine gap penalties are often used to accommodate

multi-site indels:

GP = GO + (l)GE

where:

• GP is the gap penalty.

• GO is the “gap-opening penalty”

• GE is the “gap-extension penalty”

• l is the length of the gap



Finding an optimal alignment
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pongo V D E V G G E L G R L F V V P T Q

gorilla V E V A G D L G R L L I V Y P S R

score 4 2 -2 0 6 -6 -3 -4 -2 -2 4 0 4 -1 7 4 1
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Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1
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Needleman-Wunsch algorithm (paraphrased)

• Work from the top left (beginning of both sequences)

• For each cell store the highest score possible for that cell

and a “back” pointer to tell point to the previous step in the

best path

• When you reach the lower right corner, you know the optimal

score and the back pointers tell you the alignment.

The highest score calculation at each cell only depends on the

cell’s 3 possible previous neighbors.

If one sequence is length M1, and the other is length M2, then

Needleman-Wunsch only takes O(M1M2) calculations.

But there are a much larger number of possible alignments (#

alignments grows exponentially).



V D E V G G
0 • • • • • •

V
• • • • • • •

E
• • • • • • •

V
• • • • • • •

A
• • • • • • •

G
• • • • • • •

D
• • • • • • •



Using a gap penalty of -5

V D E V G G
0 ← -5 • • • • •

V ↑
-5 • • • • • •

E
• • • • • • •

V
• • • • • • •

A
• • • • • • •

G
• • • • • • •

D
• • • • • • •



V D E V G G
0 ← -5 ← -10 • • • •

V ↑ ↖
-5 4 • • • • •

E ↑
-10 • • • • • •

V
• • • • • • •

A
• • • • • • •

G
• • • • • • •

D
• • • • • • •



V D E V G G
0 ← -5 ← -10 ← -15 • • •

V ↑ ↖
-5 4 ← -1 • • • •

E ↑ ↑
-10 -1 • • • • •

V ↑
-15 • • • • • •

A
• • • • • • •

G
• • • • • • •

D
• • • • • • •



V D E V G G
0 ← -5 ← -10 ← -15 ← -20 • •

V ↑ ↖
-5 4 ← -1 ← -6 • • •

E ↑ ↑ ↖
-10 -1 6 • • • •

V ↑ ↖ ↑
-15 -6 • • • • •

A ↑
-20 • • • • • •

G
• • • • • • •

D
• • • • • • •



Pairwise alignment is a beautiful topic in bioinformatics

• Clever programming tricks let us find the best-

scoring pairwise alignment quickly

• The additive scoring system:

– can incorporate biological knowledge (via

empirically-based substitution matrices)

– can almost be justified in terms of powerful

statistical methodology (maximum likelihood).



Pairwise alignment costs

• Paul Lewis will explain likelihood tomorrow,

• Additive costs can be justified as approximations

to the log of likelihoods if:

– we can identify the events that must have

occurred in generate the data, and

– we can assign (relative) probabilities based on

whether these events are rare or common.



Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1
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Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1
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V ↔ V P(pos. 1) = P(V ↔ V )



Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1
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V ↔ V
D ↔ -

P(pos. 1− 2) = P(V ↔ V )

×P(D ↔ −)



Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1
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V ↔ V
D ↔ -
E ↔ E

P(pos. 1− 3) = P(V ↔ V )

×P(D ↔ −)

×P(E ↔ E)



Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1

Pongo Gorilla

@
@

@
@

@
@
@

@
@
@

@@

�
�
�
�
�
�
�
�
�
�
��

V ↔ V
D ↔ -
E ↔ E

lnP(pos. 1− 3) = lnP(V ↔ V )

+ lnP(D ↔ −)

+ lnP(E ↔ E)



side note on probability models

We usually project from:

• models of instantaneous rates of events – the

“microscopic” scale (sensu Rivas & Eddy)

to:

• probabilities of descendant sequences – the

“macroscopic” scale

Rivas and Eddy [preprint] have recently gone

backwards



Rivas and Eddy L1 vs TKF91



Fig 1.3 from a great review by Lunter et al. 2005



Rivas and Eddy models

Their models are natural to implement with dynamic

programming

• linear reversible LR is a single-residue indel model

similar to TKF91,

• Affine Insert Fragment AIF is an affine indel model

similar to TKF92



Pairwise alignment summary

• The sum of the substitution and gap cost can serve

as a proxy for the log-likelihood under a reasonable

model (the LR or AIF model of Rivas and Eddy,

preprint).

• Dynamic programming can let us find the

alignment that has the highest likelihood.



from (Rausch and Reinert, 2011)



Multiple sequence alignment is an ugly topic in
bioinformatics

• Clever programming tricks help, but we still have

to rely on heuristics – approaches that provide

good solutions, but are not guaranteed to find the

best solution.

• The additive scoring system suffers from the fact

that we do not observe ancestral sequences.



• U is the set of unaligned sequences

• T is the genealogy tree that describes the ancestry of the

sequences

• H is an indel history (specification of where all inserstions

and deletions in the history of U occur on the tree T ).

• A is an alignment of the sequences U

We might want:

• P(T | U) or P(A | U) or P(T,A | U). BaliPhy approximates

these quantities, but it is tough to do for large datasets.

• Ĥ which maximizes P(H | U, T ). ProtPal (Westesson et al.,

2012) approximates this (but we have to know T )



Sum of Pairs scoring

Most MSA programs optimize a fairly strange score:

SP =
∑
i

∑
j

wijd(Ai, Aj)

where Ai is the alignment pruned down to just sequence i, and

wij is a weight for the comparison between sequences i and j.

d(Ai, Aj) can be:

• a measure of the distance from Ai to Aj or

• a measure of the consistency of the alignment A with a

pairwise alignment of i to j.

We usually cannot guarantee that we have found the alignment

that optimizes the sum of pairs score.



Aligning more than two sequences

B D A C E



Progressive alignment

An approximate method for producing multiple sequence

alignments using a guide tree.

• Perform pairwise alignments to produce a distance matrix

• Produce a guide tree from the distances

• Use the guide tree to specify the ordering used for aligning

sequences, closest to furthest.

Feng and Doolittle 1987 and Higgins and Sharp, 1988



A  PEEKSAVTALWGKVN--VDEVGG
B  GEEKAAVLALWDKVN--EEEVGG
C  PADKTNVKAAWGKVGAHAGEYGA
D  AADKTNVKAAWSKVGGHAGEYGA
E  EHEWQLVLHVWAKVEADVAGHGQ

A  -
B  .17  -
C  .59  .60  -
D  .59  .59  .13  -
E  .77  .77  .75  .75  -

A

B

D

C

E

A  PEEKSAVTALWGKVNVDEVGG
B  GEEKAAVLALWDKVNEEEVGG
C  PADKTNVKAAWGKVGAHAGEYGA

E  EHEWQLVLHVWAKVEADVAGHGQ
D  AADKTNVKAAWSKVGGHAGEYGA

A  PEEKSAVTALWGKVNVDEVGG
B  GEEKAAVLALWDKVNEEEVGG
C  PADKTNVKAAWGKVGAHAGEYGA

E  EHEWQLVLHVWAKVEADVAGHGQ
D  AADKTNVKAAWSKVGGHAGEYGA

+

tree inference

pairwise
alignment

alignment stage



Alignment stage of progressive alignments

Sequences of clades become grouped as the algorithm descends

the tree. Alignment at each step involves

• Sequence-Sequence,

• Sequence-Group, or

• Group-Group



Aligning multiple sequences

B D A C E

Seq-Seq

Seq-Seq

Seq-Group

Group-Group
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Group-to-Group alignment
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Group-to-group alignments

Adding a gap to a group means that every member of that

group gets a gap at that position.

from Edgar (2004)



Group-to-group alignment

Usually the scores for each edge in the Needleman-Wunsch

graph are calculated using a “sum of pairs” scoring system.

Many tools1 uses weights assigned to each sequence in a group

to down-weight closely related sequences so that they are not

overrepresented - this is a weighted sum-of-pair scoring system.

1e.g. Clustal and MAFFT



Greedy choices leading to failure to find the best
alignment

Consider the scoring scheme:

match = 0 mismatch = -3 gap = -7

Guide Tree: Sequences:

Sp1 Sp2 Sp3
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Sp1 GACCGTG

Sp2 GCCGTAG

Sp3 GACCGTAG



Greedy choices leading to failure to find the best
alignment

match = 0 mismatch = -3 gap = -7

ungapped1vs2
Sp1 G A C C G T G

Sp2 G C C G T A G

Score 0 -3 0 -3 -3 -3 0 Total= -12

would be preferred over gapped1vs2:

Sp1 G A C C G T - G

Sp2 G - C C G T A G

Score 0 -7 0 0 0 0 -7 0 Total= -14



Adding a Sp3 to ungapped1vs2:

Sp1 G - A C C G T G

Sp2 G - C C G T A G

Sp3 G A C C G T A G

This implies 1 indel, and 4 substitutions. Score = -19 ∗

If we had been able to use gapped1vs2 then we could have:

Sp1 G A C C G T - G

Sp2 G - C C G T A G

Sp3 G A C C G T A G

score = -14 ∗

∗ = “sort of...”



Score = -19 if we count events (but sum of pairs score would differ)



Score = -14 if we count events (but sum of pairs score would differ)



Polishing (aka “iterative alignment” can correct some
errors caused by greedy heuristics)

1. break the alignment into 2 groups of sequences (often by

breaking an edge in the merge tree).

2. realign those 2 groups to each other

3. keep the realignment if it improves the score

Opal also uses random 3-group polishing.



Weighted sum of pairs scoring system

Assigns a score for a group-to-group by averaging (or summing)

the scores all of the implied pairwise alignments.

Frequently wij = wiwj

Group 1 Group 2

Seq weight AA

taxon A 0.3 V

taxon C 0.24 A

taxon E 0.19 I

Seq weight AA

taxon B 0.15 V

taxon D 0.25 M

DG1,G2 =

∑
i

∑
j wiwjdij

ninj



Group 1 Group 2

Seq weight AA

taxon A 0.3 V

taxon C 0.24 A

taxon E 0.19 I

Seq weight AA

taxon B 0.15 V

taxon D 0.25 M

DG1,G2 =

∑
i

∑
j wiwjdij

ninj

=
1

6
[d(V, V )wAwB + d(V,M)wAwD + d(A, V )wCwB . . .

. . . d(A,M)wCwD + d(I, V )wEwB + d(I,M)wEwD]

=
1

6
(4× 0.3× 0.15 + 1× 0.3× 0.25 + 0× 0.24× 0.15 . . .

. . .−1× 0.24× 0.25 + 3× 0.19× 0.15 + 1× 0.19× 0.15)

= 1.46225



Sum-of-pairs is an odd scoring system
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Imperfect scoring system. Consider one position in a
group-to-group alignment:

(A,A,G)

Q
Q

Q
Q

Q
Q
Q

QQ

�
�
�
�
�
�
�
��

(A,A,L)

(A,A,G) ↔ (A,A,L)

The sum-of-pairs score for aligning would be:

4

9
(A↔ A) +

2

9
(A↔ L) +

2

9
(G↔ A) +

1

9
(G↔ L)



But in the context of the tree we might be pretty
certain of an A↔A event

G A A A A L

• •
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A
A
A
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A
A

A ↔ A

Note: weighted sum-of-pairs would help reflect the effect of

ancestry better (but still not perfectly; sum-of-pairs techniques

are simply not very sophisticated forms of ancestral sequence

reconstruction).



“Consistency” based alignment

In our sum of pair scoring, we could just check how often each

pair of sequences (one from Gh and one from Gv) display the

same alignment that they did in pairwise alignment.

T-Coffee (Notredame et al., 2000) introduced the idea

of performing group-to-group alignments during progressive

alignment using this sense of consistency.



Indirect consistency arguments

In the pairwise alignments,

• if h10 ∼ g12
• and p17 ∼ g12
• then h10 should align with p17



Probabilistic measures of “consistency”

The simplest assessment of the consistency of an MSA to

pairwise alignments uses just the optimal pairwise alignment of

each pair.

Opal (Wheeler and Kececioglu, 2007) uses some suboptimal

alignments.

Do et al. (2005) made an important advance by proposing

the use of the probability that two residues are aligned during

consistency-based alignment (ProbCons).

The same sort of dynamic programming traversal of the

alignment grid can give us a probability that 2 residues are

aligned.



Sequence annealing

AMAP (Schwartz and Pachter, 2007) and FSA (Bradley et al.,

2009) use a sequence annealing approach:

• start with trivial alignments (all residues opposite gaps),

• anchor regions by aligning long matches,

• merge columns as long as the score keeps improving.

Fig. 3 of (Bradley et al., 2009)



Progressive alignment

• Uses a guide tree to change the MSA problem into a series

of pairwise alignment problems;

• May not return the alignment with the best weighted sum-

of-pairs scores. Early alignment decisions get “locked in”

Most aligners try to polish the alignment, but we cannot

guarantee that we have found the optimal alignment;

• Reconstruction of ancestral sequences is usually done in a

quick-and-dirty, implicit fashion or is not done at all;



PRANK

Löytynoja and Goldman (2005) showed most progressive

alignment techniques were particularly prone to compression

because of poor ancestral reconstruction:



PRANK

Flagging inserted residues allows PRANK to effectively

skip over these positions in the ancestor, producing more

phylogenetically-sensible alignments:





ProtPal is similar to PRANK, but is retains a set of inferred ancestral seqs.
Fig. 5 of Westesson et al. (2012)



Impact of the guide tree

Using a guide tree can bias subsequent tree inference toward

the guide tree.

This can also cause inflated support.

Ironically, this effect may be more of a problem for a more

evolutionarily-sensible aligner such as PRANK or ProtPal!



Dealing with alignment ambiguity

divergent taxon pairs and least between more highly
divergent taxon pairs10,11. The multiple alignments
generated by different parameter combinations are
then analysed separately and the only relationships
that are accepted are those that are identified across 
all (or most) alignments, that is, are present in the
strict (or majority rule) consensus of the trees that are
produced by the alternative alignments12.

This approach has not been formally named but 
is termed here the ‘multiple analysis method’. The
major drawbacks include the need for multiple and
time-consuming analyses. There is also the problem
of which trees to accept (and conversely, which to
ignore) if different alignments produce different trees.
The most conservative and objective approach of
considering all trees, and accepting relationships
found across all of these, can lead to substantial and
arguably unnecessary loss of information, especially
if a single aberrant tree is present. Choosing only a
subset of these trees, however, is subjective: for
instance, one might choose the single alignment and
tree that maximizes likelihood or minimizes either
character or topological incongruence with other 

data sets because strong phylogenetic signal is
required to generate incongruence; however, the
latter criteria might lead to choosing the alignments
containg the least phylogenetic information13,14.

Elision
In the ‘elision’method, a range of plausible
alignments is generated as detailed above. However,
instead of being analysed separately, they are
combined (‘concatenated’) into a single large matrix
and evaluated in a single analysis1,15. In Fig. 1,
combining the two possible alignments (Fig. 1b,c) 
into a single matrix (Fig. 1e) would incorporate
successfully the phylogenetic information in region Y.
The alignment of the alignment-ambiguous region 
is actually constant across taxa A–C; furthermore,
taxa D and E are always aligned so that they share
identical nucleotides and a three-base gap (Fig. 1b,c).
These consistent ‘blocks of information’appear in
every alignment and will thus be weighted the same
as the signal in alignment-constant positions
(regions X and Z). The method preferentially
downweights only the alignment-variable portions 
of the data matrix (region Y), but still retains any
consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision
method on four counts. First, if many plausible
alignments are concatenated, the alignment-variable
regions are downweighted so severely that they are in
effect deleted. However, this criticism is unjustified
because, if there are (for example) ten different
possible alignments, some regions will align
constantly across all ten alignments, some regions
might ‘flip’ equally between two alignments across 
all ten, whereas other regions might be aligned
differently in all ten. The elision method would
weight fully (100%) the only possible alignment in 
the first regions, would downweight by 50% each
alignment in the second regions, and would weight
minimally (10%) each in the third regions; thus,
alignment-variable regions are downweighted only in
proportion to their variability. A second criticism was
that ‘the implications for homology are unsettling,
because individual bases [positions?] must have
individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that
biological homology is all-or-nothing: two positions 
in two taxa are homologous if they are orthologous
descendants of a position present in the latest
common ancestor of the two taxa. However, the
accuracy of inferences of homology (i.e. alignment) 
is not all-or-nothing, but instead probabilistic16; it
thus seems reasonable to weight these inferences
accordingly17,18. By downweighting alignments found
only in restricted regions of parameter space, the
elision method makes the arguably reasonable
assumption that such alignments are less probable.

The two remaining criticisms were that certain
data sets could contain a plethora of alternative
alignments, and concatenation of all these
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Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-
encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied
by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)
of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are
re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate
character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for
all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.

divergent taxon pairs and least between more highly
divergent taxon pairs10,11. The multiple alignments
generated by different parameter combinations are
then analysed separately and the only relationships
that are accepted are those that are identified across 
all (or most) alignments, that is, are present in the
strict (or majority rule) consensus of the trees that are
produced by the alternative alignments12.

This approach has not been formally named but 
is termed here the ‘multiple analysis method’. The
major drawbacks include the need for multiple and
time-consuming analyses. There is also the problem
of which trees to accept (and conversely, which to
ignore) if different alignments produce different trees.
The most conservative and objective approach of
considering all trees, and accepting relationships
found across all of these, can lead to substantial and
arguably unnecessary loss of information, especially
if a single aberrant tree is present. Choosing only a
subset of these trees, however, is subjective: for
instance, one might choose the single alignment and
tree that maximizes likelihood or minimizes either
character or topological incongruence with other 

data sets because strong phylogenetic signal is
required to generate incongruence; however, the
latter criteria might lead to choosing the alignments
containg the least phylogenetic information13,14.

Elision
In the ‘elision’method, a range of plausible
alignments is generated as detailed above. However,
instead of being analysed separately, they are
combined (‘concatenated’) into a single large matrix
and evaluated in a single analysis1,15. In Fig. 1,
combining the two possible alignments (Fig. 1b,c) 
into a single matrix (Fig. 1e) would incorporate
successfully the phylogenetic information in region Y.
The alignment of the alignment-ambiguous region 
is actually constant across taxa A–C; furthermore,
taxa D and E are always aligned so that they share
identical nucleotides and a three-base gap (Fig. 1b,c).
These consistent ‘blocks of information’appear in
every alignment and will thus be weighted the same
as the signal in alignment-constant positions
(regions X and Z). The method preferentially
downweights only the alignment-variable portions 
of the data matrix (region Y), but still retains any
consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision
method on four counts. First, if many plausible
alignments are concatenated, the alignment-variable
regions are downweighted so severely that they are in
effect deleted. However, this criticism is unjustified
because, if there are (for example) ten different
possible alignments, some regions will align
constantly across all ten alignments, some regions
might ‘flip’ equally between two alignments across 
all ten, whereas other regions might be aligned
differently in all ten. The elision method would
weight fully (100%) the only possible alignment in 
the first regions, would downweight by 50% each
alignment in the second regions, and would weight
minimally (10%) each in the third regions; thus,
alignment-variable regions are downweighted only in
proportion to their variability. A second criticism was
that ‘the implications for homology are unsettling,
because individual bases [positions?] must have
individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that
biological homology is all-or-nothing: two positions 
in two taxa are homologous if they are orthologous
descendants of a position present in the latest
common ancestor of the two taxa. However, the
accuracy of inferences of homology (i.e. alignment) 
is not all-or-nothing, but instead probabilistic16; it
thus seems reasonable to weight these inferences
accordingly17,18. By downweighting alignments found
only in restricted regions of parameter space, the
elision method makes the arguably reasonable
assumption that such alignments are less probable.

The two remaining criticisms were that certain
data sets could contain a plethora of alternative
alignments, and concatenation of all these

TRENDS in Ecology & Evolution Vol.16 No.12  December 2001

http://tree.trends.com

682 Opinion

TRENDS in Ecology & Evolution 

X        Y        Z
 1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

Outgroup T A G A G C A C T C A G 
Taxon A T A G A G C A C T C A G
Taxon B T A G T G A A G C C A G 
Taxon C T A G T G A A G C C A G
Taxon D T A G    A G C    C A G
Taxon E T A G    A G C    C A G

(a)

(c)

X        Y        Z
 1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

Outgroup T A G A G C A C T C A G 
Taxon A T A G A G C A C T C A G
Taxon B T A G T G A A G C C A G 
Taxon C T A G T G A A G C C A G
Taxon D T A G A G C - - - C A G
Taxon E T A G A G C - - - C A G

(b)

X        Y        Z    
 1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

Outgroup T A G A G C A C T C A G 
Taxon A T A G A G C A C T C A G
Taxon B T A G T G A A G C C A G 
Taxon C T A G T G A A G C C A G
Taxon D T A G - - - A G C C A G
Taxon E T A G - - - A G C C A G

(d)

            X     Y     Z
 1 2 3  "Y"  1 1 1

0 1 2

Outgroup T A G 1   C A G
Taxon A T A G   1   C A G
Taxon B T A G   2   C A G
Taxon C   T A G   2   C A G
Taxon D   T A G   3   C A G
Taxon E   T A G   3   C A G

   1 2 3

1  - 4 3
2  4 - 3
3  3 3 -

To state

Fr
om

 s
ta

te

(f) (g)

(e) X        Y        Z    
 1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

Outgroup T A G A G C A C T C A G
Taxon A T A G A G C A C T C A G
Taxon B T A G T G A A G C C A G
Taxon C T A G T G A A G C C A G
Taxon D T A G - - - A G C C A G
Taxon E T A G - - - A G C C A G

X        Y        Z    
1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

T A G A G C A C T C A G 
T A G A G C A C T C A G
T A G T G A A G C C A G 
T A G T G A A G C C A G
T A G A G C - - - C A G
T A G A G C - - - C A G

D E

Deletion

A B C

4, 6, 8, 9

Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-
encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied
by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)
of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are
re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate
character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for
all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.

divergent taxon pairs and least between more highly
divergent taxon pairs10,11. The multiple alignments
generated by different parameter combinations are
then analysed separately and the only relationships
that are accepted are those that are identified across 
all (or most) alignments, that is, are present in the
strict (or majority rule) consensus of the trees that are
produced by the alternative alignments12.

This approach has not been formally named but 
is termed here the ‘multiple analysis method’. The
major drawbacks include the need for multiple and
time-consuming analyses. There is also the problem
of which trees to accept (and conversely, which to
ignore) if different alignments produce different trees.
The most conservative and objective approach of
considering all trees, and accepting relationships
found across all of these, can lead to substantial and
arguably unnecessary loss of information, especially
if a single aberrant tree is present. Choosing only a
subset of these trees, however, is subjective: for
instance, one might choose the single alignment and
tree that maximizes likelihood or minimizes either
character or topological incongruence with other 

data sets because strong phylogenetic signal is
required to generate incongruence; however, the
latter criteria might lead to choosing the alignments
containg the least phylogenetic information13,14.

Elision
In the ‘elision’method, a range of plausible
alignments is generated as detailed above. However,
instead of being analysed separately, they are
combined (‘concatenated’) into a single large matrix
and evaluated in a single analysis1,15. In Fig. 1,
combining the two possible alignments (Fig. 1b,c) 
into a single matrix (Fig. 1e) would incorporate
successfully the phylogenetic information in region Y.
The alignment of the alignment-ambiguous region 
is actually constant across taxa A–C; furthermore,
taxa D and E are always aligned so that they share
identical nucleotides and a three-base gap (Fig. 1b,c).
These consistent ‘blocks of information’appear in
every alignment and will thus be weighted the same
as the signal in alignment-constant positions
(regions X and Z). The method preferentially
downweights only the alignment-variable portions 
of the data matrix (region Y), but still retains any
consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision
method on four counts. First, if many plausible
alignments are concatenated, the alignment-variable
regions are downweighted so severely that they are in
effect deleted. However, this criticism is unjustified
because, if there are (for example) ten different
possible alignments, some regions will align
constantly across all ten alignments, some regions
might ‘flip’ equally between two alignments across 
all ten, whereas other regions might be aligned
differently in all ten. The elision method would
weight fully (100%) the only possible alignment in 
the first regions, would downweight by 50% each
alignment in the second regions, and would weight
minimally (10%) each in the third regions; thus,
alignment-variable regions are downweighted only in
proportion to their variability. A second criticism was
that ‘the implications for homology are unsettling,
because individual bases [positions?] must have
individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that
biological homology is all-or-nothing: two positions 
in two taxa are homologous if they are orthologous
descendants of a position present in the latest
common ancestor of the two taxa. However, the
accuracy of inferences of homology (i.e. alignment) 
is not all-or-nothing, but instead probabilistic16; it
thus seems reasonable to weight these inferences
accordingly17,18. By downweighting alignments found
only in restricted regions of parameter space, the
elision method makes the arguably reasonable
assumption that such alignments are less probable.

The two remaining criticisms were that certain
data sets could contain a plethora of alternative
alignments, and concatenation of all these
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Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-
encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied
by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)
of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are
re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate
character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for
all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.

from M. S. Y. Lee, TREE, 2001



Dealing with alignment ambiguity - deletion

divergent taxon pairs and least between more highly
divergent taxon pairs10,11. The multiple alignments
generated by different parameter combinations are
then analysed separately and the only relationships
that are accepted are those that are identified across 
all (or most) alignments, that is, are present in the
strict (or majority rule) consensus of the trees that are
produced by the alternative alignments12.

This approach has not been formally named but 
is termed here the ‘multiple analysis method’. The
major drawbacks include the need for multiple and
time-consuming analyses. There is also the problem
of which trees to accept (and conversely, which to
ignore) if different alignments produce different trees.
The most conservative and objective approach of
considering all trees, and accepting relationships
found across all of these, can lead to substantial and
arguably unnecessary loss of information, especially
if a single aberrant tree is present. Choosing only a
subset of these trees, however, is subjective: for
instance, one might choose the single alignment and
tree that maximizes likelihood or minimizes either
character or topological incongruence with other 

data sets because strong phylogenetic signal is
required to generate incongruence; however, the
latter criteria might lead to choosing the alignments
containg the least phylogenetic information13,14.

Elision
In the ‘elision’method, a range of plausible
alignments is generated as detailed above. However,
instead of being analysed separately, they are
combined (‘concatenated’) into a single large matrix
and evaluated in a single analysis1,15. In Fig. 1,
combining the two possible alignments (Fig. 1b,c) 
into a single matrix (Fig. 1e) would incorporate
successfully the phylogenetic information in region Y.
The alignment of the alignment-ambiguous region 
is actually constant across taxa A–C; furthermore,
taxa D and E are always aligned so that they share
identical nucleotides and a three-base gap (Fig. 1b,c).
These consistent ‘blocks of information’appear in
every alignment and will thus be weighted the same
as the signal in alignment-constant positions
(regions X and Z). The method preferentially
downweights only the alignment-variable portions 
of the data matrix (region Y), but still retains any
consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision
method on four counts. First, if many plausible
alignments are concatenated, the alignment-variable
regions are downweighted so severely that they are in
effect deleted. However, this criticism is unjustified
because, if there are (for example) ten different
possible alignments, some regions will align
constantly across all ten alignments, some regions
might ‘flip’ equally between two alignments across 
all ten, whereas other regions might be aligned
differently in all ten. The elision method would
weight fully (100%) the only possible alignment in 
the first regions, would downweight by 50% each
alignment in the second regions, and would weight
minimally (10%) each in the third regions; thus,
alignment-variable regions are downweighted only in
proportion to their variability. A second criticism was
that ‘the implications for homology are unsettling,
because individual bases [positions?] must have
individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that
biological homology is all-or-nothing: two positions 
in two taxa are homologous if they are orthologous
descendants of a position present in the latest
common ancestor of the two taxa. However, the
accuracy of inferences of homology (i.e. alignment) 
is not all-or-nothing, but instead probabilistic16; it
thus seems reasonable to weight these inferences
accordingly17,18. By downweighting alignments found
only in restricted regions of parameter space, the
elision method makes the arguably reasonable
assumption that such alignments are less probable.

The two remaining criticisms were that certain
data sets could contain a plethora of alternative
alignments, and concatenation of all these
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Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-
encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied
by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)
of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are
re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate
character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for
all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.
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Outgroup T A G A G C A C T C A G 
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from M. S. Y. Lee, TREE, 2001



Filtering

• GUIDANCE score (Penn et al., 2010) which reflects

sensitivity of the alignment to poorly supported parts of

the guide tree; and

• Head-or-Tails algorithm (Landan and Graur, 2007) which

compares the alignment of the sequences to the alignment

that you would get from reversed forms of the sequences.

• SOAP (Löytynoja and Milinkovitch, 2001) looks for parts of

the alignment that are sensitive to alignment parameters

• trimAl (Capella-Gutiérrez et al., 2009) uses column properties

and consistency

Other tools, such as Gblocks, examine properties of the columns

in the matrix.



Simultaneous tree inference and alignment

• Ideally we would jointly estimate with uncertainty

• Allows for application of statistical models to improve

inference and assessments of reliability

• Just now becoming feasible: BAliPhy (Redelings and

Suchard, 2005)

See also: POY (Wheeler, Gladstein, Laet, 2002), Handel

(Holmes and Bruno, 2001) , and BEAST(Lunter et al., 2005;

Drummond and Rambaut, 2007).

• SATé (Liu et al., 2009) and PASTA (Mirarab et al., 2014)

are iterative (back and forth between tree and alignment

estimation)



SATé repeats the following steps until termination

A

B D

C

Merge 
subproblems

Estimate ML tree 
on merged 
alignment

Decompose based on 
input tree

A B

C D

Align 
subproblems

A B

C D

ABCD



SATé simulation results



Conclusions

• Evolutionary multiple sequence alignment is still a very active

area of research.

• We are hampered by:

– lacking a good criterion to optimize (when T is unknown).

– being forced to use rough heuristics to optimize the sum

of pairs scores.

• Filtering throws away information, but may be helpful

• Most phylogenetic inference tools ignore information from

the indel process (but see Rivas et al. (2008); Rivas and

Eddy (2013) and talk to DZ)



Recommendations

• See if BaliPhy can run on your data! If not, try FSA

• Look at your alignments

• Be aware that the standard aligners only consider

substitutions and indels. If your data shows inversions,

duplications, . . . there can be serious artifacts.

• if you have protein-coding sequences, use amino acid or

codon-aware aligners

• if you have sequences from an RNA with important secondary

structure, check out Infernal

http://infernal.janelia.org/


Fig. 2 from Katoh & Standley 2013
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Some of the tricks clustal uses to produce better
alignments

• Chooses substitution matrix (PAM or BLOSUM series for

amino acids) based on sequence similarity

• AA residues in a neighborhood affect gap opening penalty

(easier to have gaps in hydrophilic loops)

• Gap penalties are raised if a column has no gaps, but there

are gaps nearby.

• Low scoring alignments may be postponed until a later stage.



Terminal gaps

Using normal gap costs causes problems if one sequence is

missing the starting or ending residues:

Pongo VDEFKLIVEGELGRLFVVPTQ

Gorilla VD-------GELGRLFVVPTQ

instead of :

Pongo VDEFKLIVEGELGRLFVVPTQ

Gorilla -------VDGELGRLFVVPTQ

(Methods that utilize local alignment information are more

appropriate in these cases).



Using free terminal gaps to avoid this problem, but you have

to watch out for:

Pongo VDEPFRFKLTNRGTSHIILVAPR

Gorilla ------VDEPNRGTSHIILVAPR


