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1. phylogenetics is crucial for comparative biology
2. tree terminology

3. why phylogenetics is difficult

4. parsimony

5. distance-based methods

0. theoretical basis of multiple sequence alignment



Part #1: phylogenetics is crucial for biology

Species | Habitat | Photoprotection
1 terrestrial xanthophyll
2 terrestrial xanthophyll
3 terrestrial xanthophyll
4 terrestrial xanthophyll
5 terrestrial xanthophyll
6 aquatic none
14 aquatic none
3 aquatic none
9 aquatic none
10 aquatic none

slides by Paul Lewis




Phylogeny reveals the events that generate the pattern

XXX X Xe oo oo Xa Xea XX Xeo o
TTTTTAAAAA TATATTATAA

1 pair of changes. 5 pairs of changes.
Coincidence? Much more convincing



Many evolutionary questions require a phylogeny

e Determining whether a trait tends to be lost more often than
gained, or vice versa

e Estimating divergence times (Tracy Heath Sunday + next
Saturday)

e Distinguishing homology from analogy

e Inferring parts of a gene under strong positive selection (Joe
Bielawski and Belinda Chang next Monday)



Part 2: Tree terminology
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Monophyletic groups (“clades”): the basis of
phylogenetic classification
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black state = a synapomorphy
white state = a plesiomorphy
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Paraphyletic Polyphyletic

grey state is an autapomorphy

(images from Wikipedia)



Branch rotation does not matter




Rooted vs unrooted trees
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ingroup: the focal taxa
outgroup: the taxa that are more distantly related. Assuming

that the ingroup is monophyletic with respect to the outgroup
can root a tree.




Warning: software often displays unrooted trees

like this:
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Part 3: Phylogenetics is difficult

a. Many types of trees - species trees vs “gene trees’ -—
coalescents or “gene family trees”

b. Many sources of error
c. No clean sampling theory that gives us clean hypothesis tests

d. Computational + statistical difficulties



(3a) Many types of trees: cellular genealogies
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Figure 1 from DeWett et al. 2018


http://matsen.fhcrc.org/papers/DeWitt2018-el.pdf

(3a) Many types of trees: genealogies in a population
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(3a) Many types of trees: genealogies in a population
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(3a) Many types of trees: genealogies in a population
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(3a) Many types of trees: genealogies in a population

Present

X3 =
e

Past

Biparental inheritance would make the picture messier, but the genealogy
of the gene copies would still form a tree (if there is no recombination).



more terminology

It is tempting to refer to the tips of these gene trees as alleles

or haplotypes.

e allele — an alternative form a gene.
e haplotype — a linked set of alleles

But both of these terms require a differences in sequence.

The gene trees that we draw depict genealogical relationships —
regardless of whether or not nucleotide differences distinguish

the “gene copies’ at the tips of the tree.



(thanks to Peter Beerli for the images - next 3 slides)






(3a) A “gene tree” within a species tree

Gorilla Chimp Human
2 4 1 3 2 1 315 2 4

---------- “deep coalescence”
coalescence events



terminology: genealogical trees within population or
species trees

e coalescence — merging of the genealogy of multiple gene
copies into their common ancestor. “Merging” only makes
sense when viewed backwards in time.

e “deep coalescence” or “incomplete lineage sorting” refer to
the failure of gene copies to coalesce within the duration of
the species — the lineages coalesce in an ancestral species

coalescent theory + estimating migration — Peter Beerli (next
Thursday)



(3a) Inferring a species tree while accounting for the

coalescent
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Figure 2 from Heled and Drummond (2010) *BEAST

See also the recent work by Huw Ogilvie and colleagues on StarBEAST?2.



https://scholar.google.com.au/citations?hl=en&user=6m2Vc-gAAAAJ&view_op=list_works&sortby=pubdate

(3a) Considering coalescent effects without modeling
gene trees

PoMo model

(a) (b) o
PoMo Multi-species

Coalescence
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Figure 1 from De Maio et al. (2015)



(3a) Many types of tree: A “gene family tree”
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terminology: trees of gene families

e duplication — the creation of a new copy of a gene within the
same genome.

e homologous — descended from a common ancestor.

e paralogous — homologous, but resulting from a gene
duplication in the common ancestor.

e orthologous — homologous, and resulting from a speciation
event at the common ancestor.

Casey Dunn (today) and Laura Eme (next Tuesday)



Joint estimation of gene duplication, loss, and species
trees using PHYLDOG

Ornithorhynchus anatinus
Ornitharhynchus anatinus
Ornithorhynchus anatinus
Ornithorhynchus anatinus
Ornitharhynchus anatinus
Ornithorhynchus anatinus
Spermophilus tridecemiineatus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Cavia porcelius
Cavia porcellus
Oryctolagus cuniculus
Oryctolagus cuniculus
Callithrix jacchus
Homo sapiens
Homo sapiens
Homo sapiens
Pongo pygmaeus
Bos taurus
Bos taurus
Canis familiaris
Equus caballus
Equus caballus
Monodelphis domestica —

0.3

Figure 2A from Boussau et al. (2013)



(3a) Many types

of trees:

The cause of

Important caveats

splitting

“Gene DNA recombination is  usually

tree” or “a | replication ignored

coalescent”

Species tree | speciation recombination, hybridization,

Phylogeny lateral gene transfer, and deep
coalescence cause conflict in
the data we use to estimate
phylogenies

Gene family | speciation or | recombination (eg. domain

tree duplication swapping) is not tree-like




(3a) Joint estimation of gene duplication, loss, and
coalescence with DLCoalRecon

A

Locus 1

Figure 2A from Rasmussen and Kellis (2012)



(3a) DL models and coalescence

p=0

a, b, C, extinction ,
A E C E C
Locus 1 Locus 2

Figure 2B from Rasmussen and Kellis (2012)



(3a) Many types of trees: Lateral Gene Transfer

tree - a graph without cycles (loops)
network - general graph; cycles allowed

Cycles can represent

e lateral (“horizontal”) gene transfer
e hybridization between species,
e introgression between populations.

SIN(IQ

Cécile Ané (next Friday)



(3a) Many types of trees: Lateral Gene Transfer
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a) evolutionary scenario They used 423 single-copy genes
along complete phylogeny
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Part 3: Phylogenetics is difficult

a. Many types of trees - species trees vs “gene trees’ -—
coalescents or “gene family trees”

b. Many sources of error
c. No clean sampling theory that gives us clean hypothesis tests

d. Computational + statistical difficulties



(3b) sources of error cartoon

Amount of anxiety

Errors from deep coalescence
Deep time Now
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(3c) Hypothesis testing in phylogenetics is tricky

e complex literature on frequentists tests of topology (Holder
last day)

e bootstrapping - examining effects of sampling error using
resampling via computer

e Bayesian methods (Paul Lewis, John Huelsenbeck, Tracy
Heath, and Michael Landis - this Sunday and the last
Saturday)



(unknown) true value of
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(unknown) true distribution

Slide from Joe Felsenstein
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The bootstrap for phylogenies

sites
Original
Data
T A
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Bootstrap sample same number
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#2

Slide from Joe Felsenstein (and so on)



The majority-rule consensus tree
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Slide from Joe Felsenstein



(3c) bootstrapping

e http://phylo.bio.ku.edu/mephytis/boot-sample.html
e http://phylo.bio.ku.edu/mephytis/bootstrap.html


http://phylo.bio.ku.edu/mephytis/boot-sample.html
http://phylo.bio.ku.edu/mephytis/bootstrap.html

(3d) Phylogenetics is computationally difficult

Problems:

e Huge number of trees
e Strange geometry of tree space

e Large number of numerical parameters that need to be
considered.

Some strategies:

e Pragmatic computational heuristics for tree searching — Emily
Jane McTavish (tomorrow) and Bui Quang Minh (Tuesday)
e Markov chain Monte Carlo (Paul Lewis, John Huelsenbeck,

Tracy Heath, and Michael Landis - this Sunday and the last
Saturday)



Optimality criteria

A rule for ranking trees (according to the data).
Each criterion produces a score.

Examples:

e Parsimony (Maximum Parsimony, MP)
e Maximum Likelihood (ML)
e Minimum Evolution (ME)

e Least Squares (LS)



Species 1
Species 2
Species 3
Species 4
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Species 1
Species 2
Species 3
Species 4
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One of the 3 possible trees:
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1 2 3 4 5 6 7 8 9
Species1] C G A C C A G G T
Species2 C G A C C A G G T
Species3 C G G T C C G G T
Species4 C G G C C T G G T
Same tree with states at character 6
One of the 3 possible trees: instead of species names
Species 1 Species 3 A C

Species 2 Species 4 A T



Unordered Parsimony
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Things to note about the last slide

e 2 steps was the minimum score attainable.

e Multiple ancestral character state reconstructions gave a

score of 2.

e Enumeration of all possible ancestral character states is not
the most efficient algorithm.



Each character (site) is assumed to be independent

To calculate the parsimony score for a tree we simply sum the
scores for every site.

1 2 3 4 5 6 7 8 9

Speciesl] C G A C C A G G T
Species2 C G A C C A G G T
Species3 C G G T C C G G T
Species4 C G G C C T G G T
Score o 0 1 1.0 2 0 0 O
Species 1 Species 3

Tree 1 has a score of 4

Species 2 Species 4



Considering a different tree

We can repeat the scoring for each tree.

1 2 3 4 5 6 7 8 9

Speciesl C G A C C A G G T
Species2 C G A C C A G G T
Species3 C G G T C C G G T
Species4 C G G C C T G G T
Score 0 0 2 1 0 2 0 0 O
Species 1 Species 2

Tree 2 has a score of b

Species 3 Species 4



One more tree

Tree 3 has the same score as tree 2

1 2 3 4 5 6 7 8 9

Speciesl C G A C C A G G T
Species2 C G A C C A G G T
Species3 C G G T C C G G T
Species4 C G G C C T G G T
Score 0o 0 2 1 0 2 0 0 O
Species 1 Species 2

Tree 3 has a score of b

Species 4 Species 3



Parsimony criterion prefers tree 1

Tree 1 required the fewest number of state changes (DNA
substitutions) to explain the data.

Some parsimony advocates equate the preference for the
fewest number of changes to the general scientific principle
of preferring the simplest explanation (Ockham's Razor), but
this connection has not been made in a rigorous manner.



Parsimony terms

e homoplasy multiple acquisitions of the same character state

— parallelism, reversal, convergence
— recognized by a tree requiring more than the minimum

number of steps
— minimum number of steps is the number of observed states

minus 1
The parsimony criterion is equivalent to minimizing homoplasy.

Homoplasy is one form of the multiple hits problem. In pop-gen
terms, it is a violation of the infinite-alleles model.



In the example matrix at the beginning of these slides, only
character 3 is parsimony informative.

1 2 3 4 5 6 7 8 9
Speciesl C G A C C A G G T
Species2 C G A C C A G G T
Species3 C G G T C C G G T
Species4 C G G C C T G G T
Maxscore 0 0 2 1 0 2 0 O O
Minscore 0 0 1 1 0 2 0 0 O



Qualitative description of parsimony

e Enables estimation of ancestral sequences.

e Even though parsimony always seeks to minimizes the
number of changes, it can perform well even when changes
are not rare.

e Does not “prefer” to put changes on one branch over another

e Hard to characterize statistically
— the set of conditions in which parsimony is guaranteed to

work well is very restrictive (low probability of change and
not too much branch length heterogeneity);
— Parsimony often performs well in simulation studies (even
when outside the zones in which it is guaranteed to work);
— Estimates of the tree can be extremely biased.



Long branch attraction

Felsenstein, J. 1978. Cases in which
parsimony or compatibility methods will be
positively misleading. Systematic Zoology
27: 401-410.




Long branch attraction

A G

Felsenstein, J. 1978. Cases in which
parsimony or compatibility methods will be
positively misleading. Systematic Zoology
27: 401-410.

The probability of a parsimony informative
site due to inheritance is very low,

(roughly 0.0003).



Long branch attraction

A A Felsenstein, J. 1978. Cases in which
parsimony or compatibility methods will be

positively misleading. Systematic Zoology
27: 401-410.

The probability of a parsimony informative

site due to inheritance is very low,
(roughly 0.0003).

The probability of a misleading parsimony
informative site due to parallelism is much
higher (roughly 0.008).




Long branch attraction

Parsimony is almost guaranteed to get this tree wrong.
1 3

27

2 4 Inferred
True



Inconsistency

e Statistical Consistency (roughly speaking) is converging to
the true answer as the amount of data goes to oc.

e Parsimony based tree inference is not consistent for some
tree shapes. In fact it can be “positively misleading” :

— "Felsenstein zone" tree

— Many clocklike trees with short internal branch lengths and
long terminal branches (Penny et al., 1989, Huelsenbeck
and Lander, 2003).

e Methods for assessing confidence (e.g. bootstrapping) will
indicate that you should be very confident in the wrong
answer.



Long branch attraction tree again

The probability of a parsimony informative
site due to inheritance is very low,

(roughly 0.0003).

The probability of a misleading parsimony
informative site due to parallelism is much
higher (roughly 0.008).




If the data is generated such that:

(A (A
Pr é ~ 0.0003 and Pr g ~ 0.008
\ ¢ \ 4

then how can we hope to infer the tree ((1,2),3,4) ?




Note: ((1,2),3,4) is referred to as Newick or New
Hampshire notation for the tree.

You can read it by following the rules:

e start at a node

o if the next symbol is ‘(" then add a child to the
current node and move to this child,
o if the next symbol is a label, then label the node

that you are at
e if the next sym

ool I1Is a comma, then move back to

the current node’s parent and add another child,

o if the next sym
current node’'s

bol is a *)’, then move back to the
parent.




If the data is generated such that:

(A (A
Pr é ~ 0.0003 and Pr g ~ 0.008
\ ¢ \ 4

then how can we hope to infer the tree ((1,2),3,4) ?




Looking at the data in “bird's eye” view (using
Mesquite):
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Looking at the data in “bird's eye” view (using
Mesquite):

1| |II IM I"‘ll | Ill |Il|i|||ll H | [ I” I|| F"

We see that sequences 1 and 4 are clearly very
different.

Perhaps we can estimate the tree if we use the branch
length information from the sequences...



Why doesn’t simple clustering work?

Step 1: use sequences to estimate pairwise distances
between taxa.

A B C D

Al- 02 05 04
B - 046 0.4
C - 0.7
D _




Why doesn’t simple clustering work?

A B C D

Al- 02 05 04
B - 0.46 0.4
C - 0.7
D _
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Why doesn’t simple clustering work?

A B C D
Al- 02 05 0.4
B - 040 0.4
C - - 0.7
D 0 Tree from

clustering

N O W >



Why doesn’t simple clustering work?

A B C D
0 02 05 04
02 02 0.46 04
05 046 0 0.7

04 04 07 O Tree from
clustering

O 0O W >
N O W >




Why doesn’t simple clustering work?

A B C D

Al 0O 02 05 04
B|02 0. 046 0.4
C| 05 046 0 07
D04 04 07 O Tree from
clustering
0.38 C

ree with perfect fit

N O W >



Simple clustering methods are sensitive to. ..

1. differences in the rate of sequence evolution.

2. The “multiple hits” problem. — some sites are
affected by more than 1 mutation



Distance-based approaches to inferring trees

e Convert the raw data (sequences) to a pairwise
distances

e Try to find a tree that explains these distances.

e Not simply clustering the most similar sequences.
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Can be converted to a distance matrix:

Species 1 Species 2 Species 3 Species 4

v unmn O N

vecles 1
hecles 2
veclies 3

vecles 4

0 0 0.3 0.2
0 0 0.3 0.2
0.3 0.3 0 0.3
0.2 0.2 0.3 0




Note that the distance matrix is symmetric.

Species 1 Species 2 Species 3 Species 4
Species 1 0 0 0.3 0.2
Species 2 0 0 0.3 0.2
Species 3 0.3 0.3 0 0.3
Species 4 0.2 0.2 0.3 0




... SO we can just use the lower triangle.

Species 1 Species 2 Species 3
Species 2 0
Species 3 0.3 0.3
Species 4 0.2 0.2 0.3
Can we find a tree that would predict these o

character divergences?

hserved



Species 1 Species 2 Species 3
Species 2 0
Species 3 0.3 0.3
Species 4 0.2 0.2 0.3
Can we find a tree that would predict these o

character divergences?

hserved
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If our pairwise distance measurements were error-free estimates
of the evolutionary distance between the sequences, then we
could always infer the tree from the distances.

The evolutionary distance is the number of mutations that have
occurred along the path that connects two tips.

We hope the distances that we measure can produce good
estimates of the evolutionary distance, but we know that they
cannot be perfect.



Intuition of sequence divergence vs evolutionary distance

p-dist

slide from Paul Lewis

1.0
A

d

This can't

Evolutionary distance

be right!



Sequence divergence vs evolutionary distance

p-dist

1.0

0.0

d

the p-dist
“levels off”

Evolutionary distance




“Multiple hits” problem (also known as saturation)

e Levelling off of sequence divergence vs time plot is caused by
multiple substitutions affecting the same site in the DNA.

e At large distances the “raw” sequence divergence (also known
as the p-distance or Hamming distance) is a poor estimate
of the true evolutionary distance.

e Statistical models must be used to correct for unobservable
substitutions Paul Lewis (tomorrow)

e Large p-distances respond more to model-based correction —
and there is a larger error associated with the correction.
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Distance corrections

e applied to distances before tree estimation,
e converts raw distances to an estimate of the evolutionary

distance
3 4c
d=—In(1—-—
(- 5)
“raw’ p-distances corrected distances
1 2 3 1 2 3
2 C12 2 d12
3 C13 €23 3 d13 d23
41 cla coa C34 4 | dia doa daa




“raw’ p-distances corrected distances

1 2 3 1 2 3
210.0 2 0
3103 0.3 310.383 0.383
410.2 0.2 0.3 41 0.233 0.233 0.383




Least Squares Branch Lengths

— — ’L_dZ2

Sum oquuares:>4>4(p°7 - i)
ar
i i]

e minimize discrepancy between path lengths and
observed distances

e 0/ is used to “"downweight” distance estimates

with high variance



Least Squares Branch Lengths

—\ —\ ’L_dZ 2
Sum of Squares = > > (P . j)
— or.

1 ] L]

e in unweighted least-squares (Cavalli-Sforza &
Edwards, 1967): k=0

e in the method Fitch-Margoliash (1967): k = 2 and

0ij = di



Poor fit using arbitrary branch lengths

Species | d;; pi; | (p—d)?
Hu-Ch | 0.09267 | 0.2 | 0.01152
Hu-Go | 0.10928 | 0.3 | 0.03637
Hu-Or | 0.17848 | 0.4 | 0.04907
Hu-Gi | 0.20420 | 0.4 | 0.03834
Ch-Go | 0.11440 | 0.3 | 0.03445
Ch-Or | 0.19413 | 0.4 | 0.04238
Ch-Gi | 0.21591 | 0.4 | 0.03389
Go-Or | 0.18836 | 0.3 | 0.01246
Go-Gi | 0.21592 | 0.3 | 0.00707
Or-Gi | 0.21466 | 0.2 | 0.00021

S5.5. | 0.26577




Optimizing branch lengths yields the least-squares score

Species d;j Di (p — d)?
Hu-Ch | 0.09267 | 0.09267 | 0.000000000
Hu-Go | 0.10928 | 0.10643 | 0.000008123
Hu-Or | 0.17848 | 0.18026 | 0.000003168
Hu-Gi | 0.20420 | 0.20528 | 0.000001166
Ch-Go | 0.11440 | 0.11726 | 0.000008180
Ch-Or | 0.19413 | 0.19109 | 0.000009242
Ch-Gi | 0.21591 | 0.21611 | 0.000000040
Go-Or | 0.18836 | 0.18963 | 0.000001613
Go-Gi | 0.21592 | 0.21465 | 0.000001613
Or-Gi | 0.21466 | 0.21466 | 0.000000000

S.S. 0.000033144

Hu 0.04092

0.05175

Ch

Go

0.05790

0'094820r

0.11984

Gi



Least squares as an optimality criterion

SS = 0.00034

0.04742 0.09482 Or

Hu
0.05175 0.11984

Go Gi

Hu

SS = 0.0003314
(best tree)
Go

0.05790

0.0076
0.04092

0.03691
0.09482 Or

0.05175 0.11984

Ch Gi



Failure to correct distance sufficiently leads to poor
performance

“Under-correcting” will underestimate long evolutionary distances more than
short distances




Failure to correct distance sufficiently leads to poor
performance

The result is the classic “long-branch attraction” phenomenon.



Distance methods: pros

e Fast — the FastTree method Price et al. (2009) can calculate a tree in
less time than it takes to calculate a full distance matrix!

e Can use models to correct for unobserved differences
e Works well for closely related sequences

e Works well for clock-like sequences



Distance methods: cons

e Do not use all of the information in sequences

e Do not reconstruct character histories, so they not enforce all logical
constraints



Outline

1. phylogenetics is crucial for comparative biology
2. tree terminology

3. why phylogenetics is difficult

4. parsimony

5. distance-based methods

0. theoretical basis of multiple sequence alignment



Multiple Sequence Alignment (MSA) - main points

e The goal of MSA is to introduce gaps such that
residues in the same column are homologous (all
residues in the column descended from a residue
in their common ancestor).



slide by Derrick Zwickl



slide by Derrick Zwickl



Expressing homology detection as a bioinformatics
challenge

e [ he problem is recast as:
— reward matches (+ scores)
— penalize rare substitutions (— scores),
— penalize gaps (— scores),
— try to find an alignment that maximizes the total
score



e Pairwise alignment is tractable

e Most MSA programs use progressive alignment:

— this reduces MSA to a series of pairwise

operations.

— these algorithms are heuristic. They are not
guaranteed to return the optimal solution.

— the criteria used are not ideal from
an evolutionary standpoint (and this has
implications for tree inference).




e Simultaneous inference of MSA and tree is the
most appropriate choice (see Hossain et al., 2015),
but is computationally demanding. See: Poisson
Indel Process (Bouchard-Cété and Jordan, 2013),
Bali-Phy, Handel, AliFritz, and POY software

e Many people filter the automatically generated
alignments: GUIDANCE2 (and similar tools) cull
ambiguously aligned regions to lower the chance
that misalignment leads to errors in downstream
analyses.




BLOSUM 62 Substitution matrix

11




Scoring an alighment with the BLOSUM 62 matrix

Pongo V D E V G G E L G R L F V \Y P
Gorilla V E \Y A G D L G R L L I V Y P

Score 4 2 -2 0 6 -6 -3 -4 -2 -2 4 0 4 -1 7

The score for the alignment is
_ ()
Dij = Z di;
k

If ¢ indicates Pongo and j indicates Gorilla. (k) is
just an index for the column.

D;; =12



Scoring an alighment with gaps

If we were to use a gap penalty of -8:

Pongo V D E V G G E L G R L - F V V
Gorilla V - E V A G D L G R L L I V Y
Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1

By introducing gaps we have improved the score:

D;; = 40



Gap Penalties

Penalizing gaps more heavily than substitutions
avoids alignments like this:

Pongo VDEVGGE-LGRLFVVPTQ
Gorilla VDEVGG-DLGRLFVVPTQ



Affine gap penalties are often used to accommodate
multi-site indels:

GP = GO + (I)GE

where:

e GP is the gap penalty.

e GO is the “gap-opening penalty”
e GE is the “gap-extension penalty”
e [ is the length of the gap



Pairwise alighment costs

e Paul Lewis will explain likelihood tomorrow,
e Additive costs can be justified as approximations
to the log of likelihoods if:
— we can identify the events that must have
occurred in generate the data, and
— we can assign (relative) probabilities based on
whether these events are rare or common.



Pongo
Gorilla

Score

Pongo

G G

A G

0 6
Gorilla



Pongo V D E G G E L G R L F VvV V
Gorilla V - E A G D L G R L L I Vv Y
Score 4 -8 5 O 6 2 4 6 5 4 -8 0 4 -1
Pongo Gorilla

V& V P(pos. 1) =P(V « V)



Pongo v D E V G G E L G R L - F V \Y P T

Gorilla V E v A G D L G R L L I Vv Y P S
Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4
Pongo Gorilla

V& V P(pos. 1 —2) =P(V + V)

D < -

XP(D < —)



Pongo \YJ D E VvV G G E L G R L F vV V p T
Gorilla V - E VvV A G D L G R L L I V Y P S
Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4
Pongo Gorilla

V& V P(pos. 1 —=3) =P(V < V)

D < -

E v E XP(D < —)

<P(E + E)



Pongo \YJ D E VvV G G E L G R L F vV V p T
Gorilla V - E VvV A G D L G R L L I V Y P S
Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4
Pongo Gorilla

V< V InP(pos. 1—=3)=InP(V <& V)

D < -

E v E +InP(D < —)

+InP(F < F)



Multiple sequence alignment is an ugly topic in
bioinformatics

e Clever programming tricks help, but we still have
to rely on heuristics — approaches that provide
good solutions, but are not guaranteed to find the
best solution.

e [he additive scoring system suffers from the fact
that we do not observe ancestral sequences.



HOQWP

PEEKSAVTALWGKVNVDEVGG  alignment
GEEKAAVLALWDKVNEEEVGG
PADKTNVKAAWGKVGAHAGEYGA 9
AADKTNVKAAWSKVGGHAGEYGA
EHEWQLVLHVWAKVEADVAGHGQ

HOOQWP

pairwise

17 -
.59 .60 -

HOQWP

¢ tree inference

—

PEEKSAVTALWGKVNVDEVGG I

GEEKAAVLALWDKVNEEEVGG _B
PADKTNVKAAWGKVGAHAGEYGA ==
AADKTNVKAAWSKVGGHAGEYGA — D)
EHEWQLVLHVWAKVEADVAGHGQ

.59 .59 .13
.17 .77 .75

A

Cc

¢ alignment stage

PEEKSAVTALWGKVN--VDEVGG
GEEKAAVLALWDKVN--EEEVGG
PADKTNVKAAWGKVGAHAGEYGA
AADKTNVKAAWSKVGGHAGEYGA
EHEWQLVLHVWAKVEADVAGHGQ

HOOQWP

.75



Aligning multiple sequences

B DA C E

y

Seqg-Group

0.09

Group-Group



Imperfect scoring system. Consider one position in a
group-to-group alignment:

(A,A,Q) (A,A,L)

~_

(A,A,G) < (A,A,L)

The sum-of-pairs score for aligning would be:
4

9(AHA)—|—§(AHL)—|—§(GHA)—I— (G« L)

1
9



But in the context of the tree we might be pretty
certain of an A<A event

A <~ A

Note: weighted sum-of-pairs would help reflect the effect of
ancestry better (but still not perfectly; sum-of-pairs techniques
are simply not very sophisticated forms of ancestral sequence

reconstruction).



PRANK

Loytynoja and Goldman (2005) showed most progressive
alignment techniques were particularly prone to compression
because of poor ancestral reconstruction:

= al
'H.:I aE

a3
a4

b2
94
b3
b4

=

g3

45

46

GY G G G2 G GO ) G

GY G G G2 G G G) G
GY G G G2 G GO ) G




PRANK

Flagging inserted residues allows PRANK to effectively
skip over these positions in the ancestor, producing more
phylogenetically-sensible alignments:

= al
'H.:I HE

=

g3

45

46

GY G G G2 G G G) G
G G G G2 G G G) GG
G G G G2 G G G) GG




Greedy choices leading to failure to find the best
alignment

Consider the scoring scheme:
match =0 mismatch =-3 gap = -7

Guide Tree: Sequences:

Spl Sp2 Sp3
Spl GACCGTG
Sp2 GCCGTAG
Sp3 GACCGTAG



Greedy choices leading to failure to find the best
alignment

match =0 mismatch =-3 gap = -7

ungappedlvs?
Sp1 G A C C G T G

Sp2 G C C G T A G
Score 0 -3 0 -3 -3 -3 0 Total= -12

would be preferred over gappedlvs2:

Sp1 G A C C G T - G
Sp2 G - C C G T A G
Score 0 -7 0 0 O O -7 O Total= -14



Adding a S5p3 to ungappedlvs2:

Spi1 G - A C C G T G
Sp2 G - C C G T A G
Sp3 G A C C G T A G

This implies 1 indel, and 4 substitutions. Score = -19 *

If we had been able to use gappedlvs2 then we could have:

Spl G A C C G T - G
Sp2 G - C C G T A G
Sp3 G A C C G T A G

score = -14 *

* = “sort of...”



S1

Score = -19 if we count events, but sum of pairs score would differ

X E B




S1

Score = -14 if we count events, but sum of pairs score would differ

Anc.

S3

S2

B ONE B
H ANE B

—1 0 .




Polishing (aka “iterative alignment” can correct some
errors caused by greedy heuristics)

1. break the alignment into 2 groups of sequences (often by
breaking an edge in the merge tree).

2. realign those 2 groups to each other

3. keep the realignment if it improves the score

Opal also uses random 3-group polishing.
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