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Review

• Hennigian logic reconstructs the tree if we know polarity of characters
and there is no homoplasy
• UPGMA infers a tree from a distance matrix:

– groups based on similarity
– fails to give the correct tree if rates of character evolution vary much

• Modern distance-based approaches:
– find trees and branch lengths: patristic distances ≈ distances from

character data.
– do not use all of the information in the data.

• Parsimony:
– prefer the tree that requires the fewest character state changes.

Minimize the number of times you invoke homoplasy to explain the
data.

– can work well if if homoplasy is not rare
– fails if homoplasy very common or is concentrated on certain parts

of the tree



Long branch attraction

Felsenstein, J. 1978. Cases in which

parsimony or compatibility methods will be

positively misleading. Systematic Zoology

27: 401-410.

The probability of a parsimony informative

site due to inheritance is very low,

(roughly 0.0003).
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Long branch attraction

Felsenstein, J. 1978. Cases in which

parsimony or compatibility methods will be

positively misleading. Systematic Zoology

27: 401-410.

The probability of a parsimony informative

site due to inheritance is very low,

(roughly 0.0003).

The probability of a misleading parsimony

informative site due to parallelism is much

higher (roughly 0.008).

taxon1 taxon3

taxon2 taxon4
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0.01
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Long branch attraction data

Under such a tree misleading characters are more common that characters
that favor the true tree.

Rare Common
taxon1 A A C C A A C C
taxon2 A A C C G C T G
taxon3 G C T G A A C C
taxon4 G C T G G C T G



Long branch attraction

Parsimony is almost guaranteed to get this tree wrong.
1 3

2 4
True

1 3

2 4

Inferred



Likelihood

X is the data.

T is the tree.

ν is a vector of branch lengths.

Pr(X|T, ν) is the likelihood; this is sometimes

denoted L(T, ν).

Maximum likelihood: find the T and ν that gives
the highest likelihood.
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Combining probabilities
• Multiply probabilities if the component events 

must happen simultaneously (i.e. whereever you 
would naturally use the word AND when 
describing the problem)

(1/6) × (1/6) = 1/36

What is the probability of rolling two dice and having the 
first show 1 dot AND the second show 6 dots?
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Combining probabilities
• Add probabilities if the component events are 

mutually exclusive (i.e. whereever you would 
naturally use the word OR)

(1/36) + (1/36) + (1/36) + (1/36) + (1/36) + (1/36) = 1/6

What is the probability of rolling 7 using two dice? This is the same as asking 
"What is the probability of rolling  (1 and 6) OR (2 and 5) OR (3 and 4) 

OR (4 and 3) OR (5 and 2) OR (6 and 1)?"  



Copyright © 2007 Paul O. Lewis 4

Likelihood of a single sequence

12 7 7 6
G A A G T C C T T G A G A A A T A A A C T G C A C A C A C T G G

A C G T

L π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π π

π π π π

=

=

GAAGTCCTTGAGAAATAAACTGCACACACTGG

First 32 nucleotides of the ψη-globin gene of gorilla:

( ) ( ) ( ) ( )ln 12 ln 7 ln 7 ln 6 lnA C G TL π π π π= + + +

We can already see by eye-balling this that the F81 model (which
allows unequal base frequencies) will fit better than the JC69 
model (which assumes equal base frequencies) because there 
are about twice as many As as there are Cs, Gs and Ts.



Likelihoods on the simplest possible tree

GA→GG

L = L1L2

= Pr(G) Pr(G→ G) Pr(A) Pr(A→ G)

= Pr(G) Pr(G→ G|ν) Pr(A) Pr(A→ G|ν)
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Water analogy (time 0)

•Start with container A completely full and others empty
• Imagine that all containers are connected by tubes that allow 

same rate of flow between any two
• Initially, A will be losing water at 3 times the rate that C 

(or G or T) gains water

A C G T
α

−3α
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Water analogy (after some time)

A C G T
A’s level is not dropping as fast now because it is now 
also receiving water from C, G and T
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Water analogy (after a very long time)

Eventually, all containers are one fourth full and there is zero
net volume change – stationarity (equilibrium) has been 
achieved

A C G T

(Thanks to Kent Holsinger for this analogy)
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Probability of “A present”
as a function of time

Lower curve assumes we started with some 
state other than A (T is used here). Over 
time, the probability of seeing an A at this 
site grows because the rate at which the 
current base will change into an A is α.

Upper curve assumes we started with A at time 0.
Over time, the probability of still seeing an A at 
this site drops because rate of changing to one of 
the other three bases is 3α (so rate of staying the 
same is -3α).

The equilibrium relative 
frequency of A is 0.25
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Jukes-Cantor model

Pr(G→ G|ν) =
1
4

+
3
4
e
−4ν
3

Pr(A→ G|ν) =
1
4
− 1

4
e
−4ν
3



Likelihoods on the simplest possible tree

GA→GG

L = L1L2

= Pr(G) Pr(G→ G) Pr(A) Pr(A→ G)

= Pr(G) Pr(G→ G|ν) Pr(A) Pr(A→ G|ν)

=
(

1
4

)(
1
4

+
3
4
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−4ν
3

)(
1
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1
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)



The first 30 nucleotides of the ψη-globin gene

gorilla GAAGTCCTTGAGAAATAAACTGCACACTGG
orangutan GGACTCCTTGAGAAATAAACTGCACACTGG

L =
[(

1
4

)(
1
4

+
3
4
e
−4ν
3

)]28 [(1
4

)(
1
4
− 1

4
e
−4ν
3

)]2

0.00 0.05 0.10 0.15 0.20 0.25

54

53
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50

ν̂ = 0.06982
lnL = −51.13396
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A

A

A T

C

C

Likelihood of a tree
(data for only one site shown)

Arbitrarily 
chosen to serve 
as the root node

Ancestral states like 
this are not really 
known - we will 
address this in a 

minute.
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3 51 2 44 /3 4 /34 /3 4 /3 4 /33 3 31 1 1 1 1 1 1 1
4 4 4 4 4 4 4 4 4 4 4kL e e e e eν νν ν ν− −− − −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

A

A

A T

C

C
ν2

ν1

ν3

ν4

ν5 ν5 is the expected no. 
substitutions for just this
segment of the tree

Likelihood for site k

PAA(ν1) PAA(ν2) PAC(ν3)

πA

PCT(ν4) PCC(ν5)
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Brute force approach would be to calculate Lk for
all 16 combinations of ancestral states and sum



Likelihood and Bayesian procedures

1. very computationally intensive,

2. Use all of the information in the data,

3. Let us estimate the forces of character evolution while

estimating trees,

4. Uses models to detect concerted patterns of homoplasy

(this is how likelihood based procedures avoid long-branch

attraction).



Tree Searching

Parsimony and ML give us ways to deciding whether one tree

is fits our data better than another tree, but . . .

How do we find the best tree?

(or one that is good enough)
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Exhaustive Enumeration

A

B C

With the first three taxa, create the trivial unrooted tree
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A

B C

Can add fourth 
taxon (D) to any 
of the three edges

A

D

C

B

B

D

A

C

A

B

C

D

Exhaustive Enumeration...
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3 taxa

A

B C

Can add fifth
taxon (E) to 
any of the 5 
edges of each 
of the 3 4-taxon 
trees!
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Exhaustive
Enumeration
(getting tired yet?)

4 taxa

5 taxa



Tips Number of unrooted (binary) trees
4 3
5 15
6 105
7 945
8 10,395
9 135,135

10 2,027,025
11 34,459,425
12 654,729,075
13 13,749,310,575
14 316,234,143,225
15 7,905,853,580,625
16 213,458,046,676,875
17 6,190,283,353,629,375
18 191,898,783,962,510,625
19 6,332,659,870,762,850,625
20 22,164,309,5476,699,771,875
21 8,200,794,532,637,891,559,375
22 319,830,986,772,877,770,815,625
23 13,113,070,457,687,988,603,440,625 > 21 moles of trees
24 563,862,029,680,583,509,947,946,875
25 25,373,791,335,626,257,947,657,609,375



For N taxa:

# unrooted, binary trees =
N−1∏
i=3

(2i− 3)

=
N∏
i=4

(2i− 5)

# rooted, binary trees =
N∏
i=3

(2i− 3)

= (2N − 3)(# unrooted, binary trees)



Stepwise addition
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Stepwise addition
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Is stepwise addition guaranteed to find the best tree?

1 2 3 4 5

taxonA A A A A A

taxonB A C C A C

taxonC C C C T T

taxonD C A A C T

taxonE A A A T C



First step of stepwise addition

1 2 3 4 5

taxonA A A A A A

taxonB A C C A C

taxonC C C C T T

taxonD C A A C T



First step of stepwise addition

1 2 3 4 5

taxonA A A A A A

taxonB A C C A C

taxonC C C C T T

taxonD C A A C T

tree (A, B, (C, D)) 1 2 2 2 2 9

tree (A, C, (B, D)) 2 2 2 2 2 10

tree (A, D, (B, C)) 2 1 1 2 2 8



1 2 3 4 5

taxonA A A A A A

taxonB A C C A C

taxonC C C C T T

taxonD C A A C T

taxonA taxonB

taxonCtaxonD

taxonA taxonD

taxonCtaxonB
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1 2 3 4 5

taxonA A A A A A

taxonB A C C A C

taxonC C C C T T

taxonD C A A C T

taxonA taxonB

taxonCtaxonD

taxonA taxonD

taxonCtaxonB

12 3

1

1

2 2
3 3

54

45

44
5

5

taxonE A A A T C

taxonE

taxonE

54



Comparison of two five taxon trees

1 2 3 4 5

taxonA A A A A A

taxonB A C C A C

taxonC C C C T T

taxonD C A A C T

taxonE A A A T C

tree ((A, B), E, (C, D)) 1 2 2 2 2 9

tree ((A,E), D, (B, C)) 2 1 1 3 3 10



Stepwise addition

• heuristic – not guaranteed to find the best tree

• Number of trees scored for N taxa :

# trees scored =
N−1∑
i=3

(2i− 3)

= (N − 1)(N − 3)

Thus, stepwise addition is O(N2). For N=10:

63 = 3 + 5 + 7 + 9 + 11 + 13 + 15



Trying to improve a tree

Heuristic hill-climbing searches can work quite well:

1. Start with a tree
2. Score the tree
3. Consider a new tree within the neighborhood of the current tree:

(a) Score the new tree.
(b) If the new tree has a better tree, use it as the “current tree”
(c) Stop if there are no other trees within the neighborhood to consider.

These are not guaranteed to find even one of the optimal trees.

The most common way to explore the neighborhood of a tree is to swap
the branches of the tree to construct similar trees.



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.2/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.3/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.4/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.5/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.6/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.7/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.8/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.9/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.10/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.11/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.12/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.13/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.14/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.15/51



Greedy search for a maximum

If start here

Week 2: Searching for trees, ancestral states – p.16/51



Greedy search for a maximum

end up here

If start here

Week 2: Searching for trees, ancestral states – p.17/51



Greedy search for a maximum

end up here but global maximum is here

If start here

Week 2: Searching for trees, ancestral states – p.18/51



Nearest-neighbor rearrangements

U V

U V

U V

S T

S T

S T S T

U V

and reforming them in one of the two possible alternative ways:

is rearranged by dissolving the connections to an interior branch

A subtree

Week 2: Searching for trees, ancestral states – p.19/51



Schoenberg graph – edges connect NNI neighbors
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Tree “Islands” possible

An Op − L tree island (sensu Maddison, 1991): A set of trees with score
≤ L that are connected to each other by Op operations such that you can
get from any tree in the set to any other tree by repeated Op changes and
all intermediate trees along the path are also members of the set.

The following Schoenberg graph shows the scores of the 15 trees on the
following dataset (contrived data by POL):

A ACGCAGGT
B ATGGTGAT
C GCTCACGG
D ACTGTCGT
E GTTCTGAG



Schoenberg graph with parsimony scores
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Tree Islands implications

1. Islands can be larger than 1 tree – we must

consider ties if we want to find all trees that

optimize the score.

2. Swapping to completion on all optimal trees found

in a search is not guaranteed to succeed.

3. The delimitation of an island depends on tree

changing operation used.



Heuristics explore “Tree Space”

Most commonly used methods

are “hill-climbers.”

Multiple optima found by

repeating searches from

different origins.

Severity of the problem

of multiple optima

depends on step size.



Subtree Pruning Regrafting (SPR) and Tree Bisection
Reconnection (TBR)
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1-Edge-contract Refine
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2-Edge-contract Refine
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Many other heuristic strategies proposed

• Swapping need not include all neighbors (RAxML,

reconlimit in PAUP*)

• “lazy” scoring of swaps (RAxML)

• Ignoring (at some stage) interactions between different

branch swaps (PHYML)

• Stochastic searches

– Genetic algorithms (GAML, MetaPIGA, GARLI)

– Simulated annealing

• Divide and conquer methods (the sectortial searching of

Goloboff, 1999; Rec-I-DCM3 Roshan 2004)

• Data perturbation methods (e.g. Kevin Nixon’s “ratchet”)



Population with
variation



Population with
variation

lnL calculated

-127.5

-128.1

-131.0

-131.6

-132.0



Population with
variation

lnL calculated
Fitness
calculated

0.623

 0.341

0.019

0.010

0.007



Population with
variation

lnL calculated
Fitness
calculated Selection



Population with
variation

lnL calculated
Fitness
calculated Selection

Mutation



Divide-and-Conquer Methods

The basic outline of a phylogenetic Divide-and-Conquer approach is:

1. Decompose a starting tree into subsets of the taxa.

2. Improve the tree for each of the subsets of taxa.

3. Merge the resulting trees into a tree for the full set of taxa.

4. Refine the full tree (it will often have polytomies).

5. Improve the full tree using a simple (and fast) heuristic.

Examples include Rec-I-DCM3 by Roshan et al.(2004). See Goloboff and Pol
(Systematic Biology, 2007) for a contrasting viewpoint about the relative
efficiency of Rec-I-DCM3 compared to heuristics implemented in TNT.



Step 1: Leaf set decomposition

In Rec-I-DCM3 Roshan et al. (2004):

• A tree is divided (“decomposed”) into 4 trees around a central edge.
The edge is chosen such that it comes as close as possible to dividing
the taxa into 2 equally-sized groups.

• The short quartet (taxa closest to this edge in each of the 4 directions)
is selected.

• 4 sub-problems are produced. Each contains 1 subtree connected to the
central edge and all leaves that are a part of the short quartet.
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Step 2: Tree improvement

Simply a tree search on a smaller tree

DCM is a “meta-method” that can be used with almost any type of
large-scale tree inference.



Step 3: Tree Merge (Supertree analysis)

The step of “glueing” the trees for subproblems together is a supertree
analysis.

If there is no conflict between the input trees, the problem is trivial.

Roshan et recommend using a Strict Consensus Merger - collapse the
minimal number of edges required to make 2 trees display the same tree
(for the leaves that they have in common).
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Step 4: Tree Refine

Optional step - some tree searching methods require binary trees

Step 5: Tree Improve

Another “base method” tree search (but with a large set of taxa, so the
seach often has to be less thorough)
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Recursion

A recursive algorithm is one that calls (invokes) itself.

A definition of the function to compute the factorial is the classic example:

def factorial(n):
if n == 1:

return 1
else:

return n * factorial(n - 1)

Recursion is often used when it is easy to perform a few tasks, but then
you are faced with the same problem you originally faced, but on a smaller
scale.
Recursive DCM3 arises from the recognition that, when we break our full
set of taxa into subsets some of them may still be too large for thorough
searching. We can use another level of DCM to break them down into
smaller problems.
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Iteration

Because the decompositions are sensitive to the starting tree, we may do a
better job decomposing the tree into closely related subtrees if we have a
better estimate of the tree.

So we can simply repeat the whole recursive DCM process
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