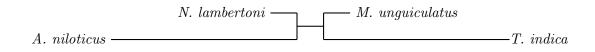
Biology 428: Introduction To Systematics – Homework #4 Due: April 15, 2014

Total points: 25


1. (25pts) (A) Use the tree and branch lengths shown below, and the Jukes-Cantor model of sequence evolution to calculate the likelihood of the following two characters:

	Character #	
Taxon	1	2
Nesomys lambertoni	А	Т
Arvicanthis niloticus	С	Т
Tatera indica	С	G
Meriones unguiculatus	А	G
Likelihood:		

See the slides on calculating a likelihood for the formulae needed. The slides give you the a formula for a A \rightarrow A event and an A \rightarrow G event across a branch of length ν . Recall that in the Jukes-Cantor model all character states are considered be interchangeable. Therefore:

- The probability for a $C \rightarrow C$ event, a $G \rightarrow G$ event, or a $T \rightarrow T$ event can each be calculated using the same formula as the $A \rightarrow A$ event.
- The probability of any particular character-state-changing event can be calculated using the formula given for the $A \rightarrow G$ event.
- For the probability of drawing any base at the root of the tree, you can simply use 0.25

The unrooted tree to use:

The branch lengths to use:

- The three short branches: $\nu_S = 0.02$ expected changes per site.
- The two long branches: $\nu_L = 0.23$ expected changes per site.

Many of the factors in the probability calculations will be re-occur as you solve this problem. You can save **a** lot of work by watching out for cases in which the same calculation will occur multiple times (and just reusing the number that you calculated). I **strongly** recommend using a spreadsheet or some other computer-based method of helping you perform these calculations. Show your work (or email us your spreadsheet).

(B) What do the probabilities imply about using parsimony to infer a tree of this shape?