
Finding the MLE of the F81 model Consider a dataset consisting of 18-base long sequence
from a single species with: nA = 8, nC = 1, nG = 3, and nT = 6. The bases are not equally
frequent in this sample, but can we reject the null that this sample was drawn from a model in
which all of the base frequencies are 0.25?

The Jukes-Cantor model assumes that the equilibrium base frequencies are all equal: πA = πC =
πG = πT = 1/4.

Felsenstein’s 1981 model allows the equilibrium base frequencies to be free parameters estimated
from the data. If 2 [ln(L(F81))− ln(L(JC))] ≥ 7.8147, then we can reject the null that the sample
comes from the JC model. Where does “7.814” come from? That is the α = 0.05 critical value
from the χ2

3 distribution (the “chi-square distribution with 3 degrees for freedom).

Where does df = 3 come from? When comparing a simple model to a richer model that contains
it (the simple model is nested inside the richer model by making constraints on the parameters of
the rich model), then twice the log of the likelihood ratio (the LRT statistic) is distributed as a
chi-squared variate with the degrees of freedom equal to the number of parameters that are free to
vary in the rich model, but constrained in the simple model.

πA, πC , and πG are free to vary to fit the data in the F81 model. Once you know those three, you
know πT = 1−πA−πC −πG. So the difference in the number of free parameters is 3 for this model
choice problem.

It is important that we compare the maximized likelihoods when calculating this LRT statistic.

So how do we know that we have the maximize likelihood?

L(F81) = Pr(D | F81, πA, πC , πG) =
18∏
i=1

Pr(Di | F81, πA, πC , πG)

= Pr(A|πA)nA Pr(C|πC)nC Pr(G|πG)nG Pr(T |πA, πC , πG)nT

= πnA
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= nA lnπA + nC lnπC + nG lnπG + nT ln [(1− πA − πC − πG)]

To find the maximum likelihood estimates (MLEs) of the parameters we take the derivatives of the
likelihood (or log-likelihood) functions with respect to the parameters and then we solve for the
parameter values that cause these derivative to be 0.

It is often easier to do this on the log scale. Recall that:
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So:
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Similarly:
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It is a bit cumbersome to go through all of the steps, but note that if we choose the following
estimates:

π̂A =
nA
n

π̂C =
nC
n

π̂G =
nG
n

We find that all 3 of the derivatives are 0 for this choice of estimators:
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Note that it is often easier to find the MLE by reparameterizing. A+G are the purines (denoted
R) and C+T are the pyrimidines (denoted Y). So we could express the F81 models as:

πR = Pr(A or G)

πAGR = Pr(A | R)

πCGY = Pr(C | Y )

πA = πRπAGR

πG = πR(1− πAGR)

πC = (1− πR)πCGY

πT = (1− πR)(1− πCGY )

In this parameterization:

lnL(F81) = nA ln[πRπAGR] + nC ln[(1− πR)πCGY ] + nG ln[πR(1− πAGR)] + nT ln [(1− πR)(1− πCGY )]

= nA lnπR + nA lnπAGR + nC ln(1− πR) + nC lnπCGY + . . .

. . .+ nG lnπR + nG ln(1− πAGR) + nT ln(1− πR) + nT ln(1− πCGY )

= (nA + nG) lnπR + (nC + nT ) ln(1− πR) + . . .

. . .+ nA lnπAGR + nG ln(1− πAGR) + nC lnπCGY + nT ln(1− πCGY )

This does not look easier until we differentiate with respect to our new parameters, and solve each
to find the value that gives a derivative of 0:
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(nC + nT )π̂R = (nA + nG)(1− π̂R)

(nC + nT )π̂R = (nA + nG)− (nA + nG)π̂R

(nA + nG + nC + nT )π̂R = (nA + nG)

π̂R = (nA + nG)/(nA + nG + nC + nT ) = (nA + nG)/n

Similar arguments from:
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lead to the MLEs:

π̂AGR = nA/(nA + nG)

π̂CGY = nC/(nC + nT )



In terms of the orginal parameterization:

π̂A = π̂Rπ̂AGR =

(
nA + nG

n

)(
nA

nA + nG

)
=
nA
n

π̂G = π̂R(1− π̂AGR) =

(
nA + nG

n

)(
nG

nA + nG

)
=
nG
n

π̂C = (1− π̂R)π̂CGY =

(
nC + nT

n

)(
nC

nC + nT

)
=
nC
n

π̂T = (1− π̂R)(1− π̂CGY )

(
nC + nT

n

)(
nT

nC + nT

)
=
nT
n

This is just one demonstration of a general property of ML: it is invariant to reparameterization. We
can reparameterize whenever we feel like it to make it easier to find MLEs. We can simply invert
the transformation involved in the reparameterization to get the MLEs in terms of the original
parameterization. The maximized likelihood will be the same in either parameterization.


