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1 Estimating allele freq from genotypes of mom + one child families

1.1 The data

n families that have a genotype of the mother and one child. For each family we have a pair of observations,
a mother’s genotype and a child’s genotype. So xi = (mi, ci) if xi is the pair of genotypes for family i with
mi and ci being the mother’s genotype and child’s genotype.

1.2 model

We have 1 parameter that we want to estimate: q, the frequency of the A allele (with B being the other
allele). So:

P(g = A) = q (1)

P(g = B) = 1− q (2)

where g represents some gene sequence drawn randomly from the “gene pool.”
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1.3 The likelihood

By definition the likelihood is the probability of the entire data set: L(q) = P(X | q) Assuming the families
are independent:

L(q) = P(X | q) =
n∏

i=1

P(xi) (3)

It is tempting to simplify by assuming the genotypes are independent:

L(q) =
n∏

i=1

P(mi)P(ci), but this is wrong!

This is wrong because it assumes that the child’s genotype is independent of the mom’s genotype. That is
clearly not a reasonable assumption. We need to use conditional probability:

L(q) =

n∏
i=1

[P (mi)P (ci | mi)] (4)

1.4 Connecting the model to the general likelihood equation

1.4.1 The probability of maternal genotypes

The first factor for each family is the probability that we’d get mom’s genotype, if the allele frequency of A
was q. If we assume mom’s two gene copies are each independent draws from the “gene pool” we can make
probabilistic statements about mom’s genotype from the allele frequencies (this is just the Hardy-Weinberg
model).

P(mi = AA) = q2 (5)

P(mi = AB) = 2(1− q)q (6)

P(mi = BB) = (1− q)2 (7)

1.4.2 The probability of the child’s genotype given mom’s genotype

The second factor is the probability of each possible value for ci conditional on mi and q. Mendel tells us
these. It is convenient to put them in table 1:

ci = AA ci = AB ci = BB

mi = AA q (1− q) 0
mi = AB q/2 1/2 (1− q)/2
mi = BB 0 q (1− q)

Table 1: P(ci | mi, q) for every combiniation of mi and ci
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The middle row is a bit trickier to derive than the others:

P(ci = AA | mi = AB) = P(mom gives A)P(dad gives A)

= (1/2)(q) = q/2 (8)

P(ci = AB | mi = AB) = P(mom gives A)P(dad gives B) + P(mom gives B)P(dad gives A)

= (1/2)(1− q) + (1/2)(q) = 1/2 (9)

Note that each row of the conditional probability table sums to 1, because each row considers the entire
sample space of the random event ci.

1.5 Expressing the likelihood as the joint probability for each “row” of data

Making the probability statement for each family, is then just the product of the probability of mom’s
genotype and the probability of the child conditional on mom’s genotype (the P (mi)P (ci | mi) factors in
the likelihood eqn).

ci = AA ci = AB ci = BB

mi = AA q3 q2(1− q) 0

mi = AB q2(1− q) q(1− q) q(1− q)2

mi = BB 0 q(1− q)2 (1− q)3

Table 2: P(mi, ci | q) for all combinations of mi and ci

It is a bit harder to see, but the sum of every entry in table 3 is to 1 (for any value of q in the feasible
range 0 ≤ q ≤ 1), because this table covers all of the possible genotypes for a mom+child.

1.6 Terser representation of the data

We don’t care what order we encounter the families. The only thing that matters is the number of families
observed in each datatype. Also note that geneticist like to be terse. So we might want to denote a
genotype with a count of B alleles (so AA = 0, AB = 1, BB = 2). This let’s us summarize the data in
nine counts: [n00, n01, n02, n10, . . . , n22] where

n =
2∑

a=0

2∑
b=0

nab

or in tabular form:

Note that if n02 > 0 or n20 > 0, we have an “impossible family” (indicating an error in our data or a
mutation, which is disallowed in our model).

Because the order of the observations don’t matter (only the counts matter), the stats jargon would say
the the counts are a “sufficient statistic” in the inference problem.
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ci = AA ci = AB ci = BB row sum

mi = AA n00 n01 n02 n0

mi = AB n10 n11 n12 n1

mi = BB n20 n21 n22 n2

Grand total n

Table 3: conventions for referring to counts of the data

1.7 Rewriting the likelihood with the terser data representation

This make the likelihood contribution very compact, too:

L(q) =
n∏

i=1

[P (mi)P (ci | mi)]

=

2∏
a=0

2∏
b=0

[P (mi = a)P (ci = b | mi = a)]nab (10)

1.8 Moving to the log-scale

Products are hard to deal with when finding derivatives, so we can move to the log scale:

lnL(q) =
2∑

a=0

2∑
b=0

ln ([P (mi = a)P (ci = b | mi = a)]nab)

=

2∑
a=0

2∑
b=0

nab ln ([P (mi = a)P (ci = b | mi = a)]) (11)

=
2∑

a=0

2∑
b=0

(nab ln [P (mi = a)] + nab ln [P (ci = b | mi = a)]) (12)

Note that there is some sharing of terms in the log-likelihood, if we just look at the first term in each
log-likelihood:

lnL(q) =
2∑

a=0

2∑
b=0

nab ln [P (mi = a)] +
2∑

a=0

2∑
b=0

nab ln [P (ci = b | mi = a)] (13)

=
2∑

a=0

na ln [P (mi = a)] +
2∑

a=0

2∑
b=0

nab ln [P (ci = b | mi = a)] (14)

where we use the row sum notation introduced earlier: na = na0 + na1 + na2 to denote a count of all of
the families that have a particular maternal genotype. In other words, if you just see one number as a
subscript for n we are using it to refer to the count of mothers with that genotype. The notation allows
us to skip the summation over b (our index indicating the child’s genotype).

This lets us realize that the log-likelihood neatly breaks down into a term that reflects the probability of
the maternal genotypes, and another term that reflects the probability of the children’s genotypes:

lnL(q) = M + C where:
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M =

2∑
a=0

na ln [P (mi = a)]

C =

2∑
a=0

2∑
b=0

nab ln [P (ci = b | mi = a)]

1.9 Making the log-likelihood equation more concrete

Now we can substitute our probability model into the likelihood. The algebra in parts:

M = n0 ln(q2) + n1 ln(2q(1− q)) + n2 ln((1− q)2)

= 2n0 ln(q) + n1 ln(2) + n1 ln(q) + n1 ln(1− q)) + 2n2 ln(1− q)

= (2n0 + n1) ln(q) + (2n2 + n1) ln(1− q) + n1 ln(2) (15)

There is less simplification when we substitute for C. Dropping out the terms with coefficients (n02 and
n20) we see:

C = n00 ln(q) + n01 ln(1− q) + n10 ln(q/2) + n11 ln(1/2) + n12 ln((1− q)/2) + n21 ln(q) + n22 ln(1− q)

= (n00 + n10 + n21) ln(q) + (n01 + n12 + n22) ln(1− q) + (n10 + n11 + n12+) ln(1/2)

= (n00 + n10 + n21) ln(q) + (n01 + n12 + n22) ln(1− q)− n1 ln(2) (16)

So the full log-likelihood collapses to a charming form:

lnL(q) = M + C

= (2n0 + n1) ln(q) + (2n2 + n1) ln(1− q) + n1 ln(2) . . .

+ (n00 + n10 + n21) ln(q) + (n01 + n12 + n22) ln(1− q)− n1 ln(2)

= (2n0 + n1) ln(q) + (2n2 + n1) ln(1− q) + (n00 + n10 + n21) ln(q) + (n01 + n12 + n22) ln(1− q)

= (2n0 + n1 + n00 + n10 + n21) ln(q) + (2n2 + n1 + n01 + n12 + n22) ln(1− q) (17)

1.10 Finding the maximum likelihood estimator of q

We now will differentiate the log-likelihood with respect to the parameter of the model (q), so we can see
how the log-likelihood changes as a function of q:

lnL(q) = (2n0 + n1 + n00 + n10 + n21) ln(q) + (2n2 + n1 + n01 + n12 + n22) ln(1− q)

d lnL(q)

dq
=

2n0 + n1 + n00 + n10 + n21

q
− 2n2 + n1 + n01 + n12 + n22

1− q
(18)

The maximum for the log-likelihood has to be either at one of the ends of the feasible range (at q = 0 or
q = 1) or when the derivative is 0. Assuming (for now) that the MLE is where the derivative is 0, we can
solve for the MLE (q̂):

2n0 + n1 + n00 + n10 + n21

q̂
− 2n2 + n1 + n01 + n12 + n22

1− q̂
= 0
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2n0 + n1 + n00 + n10 + n21

q̂
=

2n2 + n1 + n01 + n12 + n22

1− q̂

(2n0 + n1 + n00 + n10 + n21) (1− q̂) = (2n2 + n1 + n01 + n12 + n22) q̂

(2n0 + n1 + n00 + n10 + n21) = (2n0 + n1 + n00 + n10 + n21 + 2n2 + n1 + n01 + n12 + n22) q̂

(2n0 + n1 + n00 + n10 + n21) = (2n0 + 2n1 + 2n2 + n00 + n10 + n21 + n01 + n12 + n22) q̂

q̂ =
2n0 + n1 + n00 + n10 + n21

2n0 + 2n1 + 2n2 + n00 + n10 + n21 + n01 + n12 + n22

Note that n0 = n00 + n01 because n02 = 0 if there are no impossible families. Similarly: n2 = n21 + n22

This lets us simplify the denominator:

q̂ =
2n0 + n1 + n00 + n10 + n21

3n0 + 2n1 + 3n2 + n10 + n12

A bit more cryptically: n1 = n10 + n11 + n12, so n10 + n12 = n1 −+n11, allowing us to restate:

q̂ =
2n0 + n1 + n00 + n10 + n21

3n0 + 3n1 + 3n2 − n11

Further n = n0 + n1 + n2, so

q̂ =
2n0 + n1 + n00 + n10 + n21

3n− n11

Making sense of the MLE

When we observe n unrelated, diploid mom’s drawn from the population, we would expect that the best
guess of the frequency of A alleles is the number of A alleles divided by the number of loci that we have
sequenced:

q̂m =
2n0 + n1

2n
(19)

where the coefficient of 2 in the numerator comes from the fact that n0 mom’s have 2 A alleles. The 2 in
the denominator reflect diploidy (2 gene copies/mom).

If we know mom’s genotype, then the only thing we learn about the frequency of alleles is what we learn
by looking at dad’s contribution. If we denote dad’s contribution by di we can line up the outcomes in our
tabular form:

ci = AA ci = AB ci = BB

mi = AA di = A di = B impossible
mi = AA di = A di =? di = B
mi = AA impossible di = A di = B

You might expect an estimator based soley on the children’s genotypes to be just a count of all of the times
dad gave an A over all of the times that we can figure out what dad gave. This turns out to be:

q̂c =
n01 + n10 + n21

n− n11
(20)
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because the only case in which we can’t figure out dad’s contribution is n11 families (those for which mom
and child have genotype AB).

Seen in light of these facts our overall estimator:

q̂ =
2n0 + n1 + n00 + n10 + n21

3n− n11

makes sense because the numerator is the number of counts in of A alleles that can be clearly seen to be
drawn from the gene pool (the sum of the numerators of the q̂m and q̂c estimators). And the denominator
is just the count of the scorable-as-drawn-from-the-gene-pool alleles (the sum of denominators of the 2
partial-data estimators).

MLE’s don’t always have such a nice intuitive interpretation to them, so we must cherish the cases in which
the do.
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