
notes from the week of Feb. 18, 2019

Contents

1 Posterior distribution for ν 1

1.1 the prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 the likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 the marginal likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 the posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 a 95% credible interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

We worked through Bayes’ rule and then talked about the difference between confidence intervals and
Bayesian posterior probability statements (see http://phylo.bio.ku.edu/biostats/bad_bean_counter.
pdf)

1 Posterior distribution for ν

. We’ll use ν = ut, as the branch length in terms of the expected number of changes over a branch in a
genealogy.

Back to our original example X = 5 and the branch length from JKK to the MRCA and back to you is
2ν.

We assume that the Poisson describes the probability of any number of mutations given the expected
number In an ML context, you’d get ν̂ = 2.5 and you could define a 95% confidence interval based on what
values of ν give you log-likelihoods that are 1.92 lower than the log-likelihood at ν = 2.5.

For a Bayesian inference of ν, we start with Bayes’ rule applied to this problem:

f(ν | X = 5) =
g(ν)P(X = 5 | ν)

P(X = 5)
(1)

where f(ν | X = 5) is the “posterior probability density of ν” and g(ν) is the “prior probability density of
ν.” Both are probability distributions, meaning that the integral of the density over the feasible range for
ν (which is 0 ≤ ν <∞) will be 1.

1.1 the prior

In a purely subjective Bayesian perspective we’d have to figure out how to describe our prior beliefs. In
practice, we often pick an analytically tractable distribution that is close to what we want to express as
our prior beliefs, while still being easy to work with mathematically.

Last week we saw that population genetics tells us the t ∼ Exponential(λ = 1/N) where N is the effective
population size. If we pretended that we knew the mutation rate for our locus (which is not terribly
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implausible as there is a lot of data about the rate of molecular evolution in mammalian mitochondrial
genes), then perhaps our uncertainty about ν can be thought of as being basically some exponential
distribution.

An exponentail distribution is just a special case of a Gamma distribution, where α = 1 and β = λ when
we are using the “shape+rate” parameterization of the the Gamma distribution. Wikipedia tells us that
if x ∼ Gamma(α, β) then:

g(x | α, β) =
βα

Γ(α)
xα−1e−βx (2)

E[x] =
α

β
(3)

Var(x) =
α

β2
(4)

So if we wanted to say our prior on ν is a fairly broad exponentail distribution with a mean of 5 (= 1
5 = 0.2

in the typical Exponential notation or α = 1, β = .2 in our preferred notation for the Gamma). So, to be
concrete:

g(ν | α, β) =
βα

Γ(α)
να−1e−βν (5)

g(ν | α = 1, β = 0.2) =
0.2

Γ(1)
ν0e−0.2ν (6)

1.2 the likelihood

Recall that our expectated number of mutations in ν and our likelihood is Poisson:

P(X = 5 | ν) =
(2ν)5e−2ν

5!
(7)

1.3 the marginal likelihood

The denominator of Bayes’ rule is tough it is:

P(X = 5) =

∫ ∞
0

P(X = 5 | ν)g(ν)dν (8)

Crucially it is is a constant – it is the same for every value of ν. So we’ll just call it K

1.4 the posterior

So what is our posterior density?

f(ν | X = 5) =
g(ν)P(X = 5 | ν)

P(X = 5)
(9)

=

0.2
Γ(1)ν

0e−0.2ν (2ν)5e−2ν

5!

K
(10)

= K2ν
0e−0.2νν5e−2ν (11)

= K2ν
5e−2.2ν (12)
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where K2 is a constant that is just a product of all of the parts of the equation that don’t depend on ν.

The key thing to recognize is that the shape of the density is just the relative height as ν changes. That
shape is determined by ν5e−2.2ν K2 is the “normalization constant” that we’d have to multiple to every
density so that the whole thing integrates to 1. Conveniently, the shape of the posterior that we derived
is exactly the shape of a Gamma(α = 6, β = 2.2) distribution. That means that K2 = 2.26/Γ(6) (because
that is the coefficient of the Gamma density, and the Gamma integrates to 1, too). Figure 1 shows the
prior, likelihood, and posterior for ν

Figure 1: Poisson likelihood (red - not a probability distribution over ν), the Gamma(α = 1, β = 0.2) prior
and Gamma(α = 6, β = 2.2)

1.5 a 95% credible interval

Because the posterior is a nice analytically well-characterized distribution, we can use qgamma(0.025,

shape=6, rate=2.2) and qgamma(0.975, shape=6, rate=2.2) in R to find the values of ν that chop off
the lower and upper 2.5% tails to get a credible interval. Most Bayesians use a slightly different Highest
Posterior Density (HPD) interval, which is the smallest interval (on the ν axis) that integrates to 0.95.
But these intervals would be quite similar for this problem.
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Figure 2 shows the likelihood with the 1.92 log drop (the maximized likelihood divided by e1.92). The
ML-based 95% confidence interval is 0.87 < ν < 5.37, while the Bayesian 95% credible interval produces
by cropping off 2.5% from each tail is the statement that P(1.00 < ν < 5.30 | X = 5) = 0.95 using our
prior.

It is common for the 95% credible interval to be a tiny bit smaller (more precise) than the 95% confidence
interval. Recall that the confidence interval is based on a recipe guaranteeing 95% coverage that was
designed before we look at the data. By fully exploiting prior information and conditioning our inference
fully on the data, the Bayesian approach has a bit more power (at the cost of having more inputs that it
could be sensitive to).

Figure 2: Likelihood and posterior. Confidence interval boundaries computed by the 1.92 ln-likelihood
drop method. Credible interval boundaries computed by the qgamma method in R.

https://en.wikipedia.org/wiki/Conjugate_prior#Table_of_conjugate_distributions has a nice
table of conjugate priors that can be used when your likelihood has a nice form to guarantee that the
posterior will have an analytically tractable form.

Later in the course we’ll use Markov chain Monte Carlo methods to do Bayesian estimation even when we
don’t have a likelihood that has a conjugate prior.
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