
Binomial distribution gives the probability of k successes in n independent trials where a success
has probability p on each trial and k ∈ [0, 1, 2, . . . n]:

P(X = k) =

(
n
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)
pk(1− p)n−k (1)(
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k

)
=

n!

k!(n− k)!
(2)

In the study design, someone looked at 15 families. Each family is assumed to be independent, and
each family has 12 children. The observed data X = [x1, x2, . . . x15] is the count of the number of
boys in each family. By assuming independence across families, we can calculate the likelihood as:

L(p) = P(X | p, n) =
15∏
i=1

P(xi | p, n) (3)

and we know that n = 12 for each family, so:

L(p) = P(X | p, n = 12) =
15∏
i=1

P(xi | p, n = 12) (4)

=
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i=1

(
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)
pxi(1− p)12−xi (5)

lnL(p) = `(p) =
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]
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=
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)
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=
15∑
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)
+ xi ln p + (12− xi) ln(1− p)

]
(8)

If we put in different values in the range 0 < p < 1, we get different a log-likelihood for each value
of the unknown parameter p (the probability that a child is male). Data shown JKK’s spreadsheet
had counts of boys from the 15 families. Because there were both boys and girls in the sample,
L(p = 0) = L(p = 1) = 0, indicating that girls-only or boys-only models are completely incapable
of producing data like the observed data.

Also of interest is the fact that the first term in the summation, ln
(
12
k

)
, does not depend on p at

all. So if we want to find the “best” value of p, we can ignore the first term of `.

The trace plot of the ` as a function of p showed a peak for p just a bit greater than 0.5. This is
the maximum likelihood estimate, p̂, of p.

Some substition reveals:

L(p) =

15∑
i=1

[
ln

(
12

k

)
+ xi ln p + (12− xi) ln(1− p)

]
(9)

= K +

15∑
i=1

[xi ln p + (12− xi) ln(1− p)] (10)
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where K is the constant (does not change when p changes) that we ignore.

Further simplifications using commutativity of addition, and the definition of the mean:

x̄ =

(
15∑
i

xi

)
/15 (11)

lnL(p) = K +
15∑
i=1

[xi ln p + (12− xi) ln(1− p)] (12)

= K + 15x̄ ln[p] + 15(12− x̄) ln[1− p] (13)

Recall from calculus that the extreme values of a function occurs when the derivative is 0 or at the
boundaries of the function. So we can differentiate with respect to p, to find the MLE of p:

∂ lnL(p)

∂p
=

15x̄

p
+
−15(12− x̄)

1− p
(14)

using:
∂a ln f(p)

∂p
=

(
∂f(p)

∂p

)(
a

f(p)

)
(15)

Our traceplot showed that the endpoints were minima, and the point with a derivative of 0 is the
maximum, so:

∂ lnL(p)

∂p
= 0 when p = p̂ (16)

15x̄

p̂
+
−15(12− x̄)

1− p̂
= 0 (17)

15x̄

p̂
=

15(12− x̄)

1− p̂
(18)

x̄(1− p̂) = (12− x̄)p̂ (19)

x̄ = 12p̂ (20)

p̂ = x̄ (21)

In other words, the MLE of the probability of male child is just the average number of male children
per family divided by the family size (12). For the data shown in lecture x̄ = 6.4, so p̂ was just a
bit above 0.5.
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