Lecture 5 — Feb 3 — Markov chains

X = [H,H,H,L,L,M,M,M,L,L,L,L,L,L,L]

where we are presuming that these refer to high, medium, and low positions in a tree.

Discrete time Markov chains

We have a state set S € {H, L, M}, and a sequence of events. In a k-th order Markov process, the
probabilities depend on the the previous k steps in the chain. So in a first order Markov process,
the current state (i) affects the next state (i + 1), but the next state is independent of the previous
state (i — 1) conditional on state for time i.

So if x; is the state at time ¢, then:
P(xt+1 | Tty Lt—1y.-- :6'1) = P($t+1 ’ l’t)

So P(x¢41 | x¢) is the transition probability for the Markov chain (or the transition kernel). To
describe a Markov transition probability, you need to describe the from state and the to state:

[ p(H — H) p(H— M) p(H— L)
P = p(M - H) p(M — M) p(M— L)
| »(L—-H) p(L—-M) p(L—L)

PHH PHM PHL
= PMH PMM PML
PLH PLM PLL

So

P(X) = erHHpHHpHLpLLpLMpMMpMMpMLp%L

Where we have a power of 6 at the end because the last 6 transitions in the data are L to L.
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P(X |e,p) = P(xy | 4-1)
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InL(e,p) = Inley,] Z ln[pxt—hflit]
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where n;; is the count of the number of times in your data in which you observed an ¢ — j transition.

We can take the derivative with respect to each parameter. but we find that we can maximize the
likelihood by maximizing each of the € and p parameters, but this violates our constraints that the
rows of the transition matrix must be probabilities that sum to 1.



So we can reparameterize such that p;; is not a parameter:

|S|

pn = 1= py
j=2

So for all j > 2:
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Pij pi1
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Dij pbi1
Mg _ Dy (4)
n41 Dbi1

A formal argument would deal with the situations in which n;; is 0 (which poses problems when
it is in the denominator), but that is a bit tedious. In the end it boils down eqn , which states
that the way to maximize the likelihood is to set each p;; according to the relative frequency of n;;
among other events that started in state i. So,

bii = Tij
Y >k Mik
This makes sense. The MLE for the probability of being in state j in the next step given that you

are currently in ¢ is simply proportion of times that ¢ — j occurred in your data set out of all of
the transitions that started in state <.




