
Lecture 5 – Feb 3 – Markov chains

X = [H,H,H,L,L,M,M,M,L,L,L,L,L,L,L]

where we are presuming that these refer to high, medium, and low positions in a tree.

Discrete time Markov chains

We have a state set S ∈ {H,L,M}, and a sequence of events. In a k-th order Markov process, the
probabilities depend on the the previous k steps in the chain. So in a first order Markov process,
the current state (i) affects the next state (i+ 1), but the next state is independent of the previous
state (i− 1) conditional on state for time i.

So if xt is the state at time t, then:

P(xt+1 | xt, xt−1, . . . x1) = P(xt+1 | xt)

So P(xt+1 | xt) is the transition probability for the Markov chain (or the transition kernel). To
describe a Markov transition probability, you need to describe the from state and the to state:

P =

 p(H → H) p(H →M) p(H → L)
p(M → H) p(M →M) p(M → L)
p(L→ H) p(L→M) p(L→ L)


=

 pHH pHM pHL

pMH pMM pML

pLH pLM pLL


So

P(X) = εHpHHpHHpHLpLLpLMpMMpMMpMLp
6
LL

Where we have a power of 6 at the end because the last 6 transitions in the data are L to L.

P(X | ε, p) = εx1

n∏
t=2

P(xt | xt−1)

= εx1

n∏
t=2

pxt−1,xt

lnL(ε, p) = ln[εx1 ]

n∑
t=2

ln[pxt−1,xt ]

= ln[εx1 ]
∑
i∈S

∑
j∈S

nij ln[pij ]

where nij is the count of the number of times in your data in which you observed an i→ j transition.

We can take the derivative with respect to each parameter. but we find that we can maximize the
likelihood by maximizing each of the ε and p parameters, but this violates our constraints that the
rows of the transition matrix must be probabilities that sum to 1.
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So we can reparameterize such that pi1 is not a parameter:

pi1 = 1−
|S|∑
j=2

pij

So for all j ≥ 2:

∂`

∂pij
=

nij
pij
− ni1
pi1

(1)

0 =
nij
p̂ij
− ni1
p̂i1

(2)

nij
p̂ij

=
ni1
p̂i1

(3)

nij
ni1

=
p̂ij
p̂i1

(4)

A formal argument would deal with the situations in which ni1 is 0 (which poses problems when
it is in the denominator), but that is a bit tedious. In the end it boils down eqn (4), which states
that the way to maximize the likelihood is to set each pij according to the relative frequency of nij
among other events that started in state i. So,

p̂ij =
nij∑
k nik

.

This makes sense. The MLE for the probability of being in state j in the next step given that you
are currently in i is simply proportion of times that i → j occurred in your data set out of all of
the transitions that started in state i.
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