
You have studied bill width in a population of finches for many years. You record your data in
units of the standard deviation of the population, and you subtract the average bill width from all
of your previous studies of the population. Thus, if the bill widths are not changing year-to-year
and they are distributed according the Normal distribution (as many quantitative traits are), then
your data should be described by N (0, 1).

Problem: Consider the following data set collected from 5 randomly sampled birds following from
this population, but following a year of drought:

Indiv. standardized bill width

1 0.01009121
2 3.63415088
3 -1.40851589
4 3.70573177
5 -0.94145782

Oddly enough it appears that you have enough money to measure bill widths using an SEM (based
on the ridiculous number of digits in your measurments), but you can only catch 5 finches.
Can you conclude that the mean bill width in the population has changed?

Solution: If you talk to someone without any statistical training (and then translate their answer
into stats jargon), they will say that we should answer this by:

1. estimating the mean based on the data (estimate µ̂), and then
2. see if µ̂ = 0.

But this clearly ignores the fact that our estimate will be affected by sampling error (so we’ll
conclude there has been a change in the mean any time we do the test).

If you ask someone trained in Neyman-Pearson style of hypothesis testing they’ll say that we should:

1. state the null hypothesis (H0 : µ = 0, in this case);
2. stat the alternative hypotheses (HA : µ 6= 0 in this case);
3. choose a test statistic;
4. choose your Type I error rate (usually denoted α) to be what you consider to be an acceptable

probability of rejecting a null hypothesis when it is true.
5. determine the null distribution of the test statistic - the frequency distribution of the values

of the statistic that we would see if the null hypothesis were true.
6. from the null distribution of the test statistic, the Type I error rate, and the knowledge of

what values of the test statistic are more compatible with the alternative hypothesis than the
null, you can determine the critical value of your test statistic.

7. If the value of the test statistic calculated on the real data is more extreme than the critical
value, then you reject the null.

This is a general procedure. Which test statistic you should use is not always obvious.
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The Neyman-Pearson lemma states that we should use the likelihood ratio test-statistic if we are
testing two distinct points (e.g. if H0 : µ = 0 and HA : µ = 1 for example). The lemma actually
states that the likelihood ratio test-statistic is the most powerful (e.g. gives us the most power to
reject the null when it is false) that is “honest” in the sense of guaranteeing it reported Type I
error rate.

In our case, we do not have a distinct hypothesis (“point hypothesis”) as an alternative. But we
can still use the likelihood ratio as our test statistic, but we have to have a pair of points to use
when calculating the test statistic. We can use the MLE when calculating the likelihood that is in
the denominator in the ratio, and we can use the null hypothesis’ value of µ when calculating the
numerator. We also take the log of the ratio and multiply it by -2 (so that the properties that we
proved in problem #3 of homework #2 hold):

−2 ln Λ = 2 ln[L(µ̂)]− 2 ln[L(µ0)].

As you may recall from the second homework:

L(µ) = Pr(X|µ)

=

n∏
i=1

Pr(xi|µ)

=

n∏
i=1

1√
2πσ2

e−
(xi−µ)

2

2σ2

If we assume that σ = 1 then we also showed that:

ln[L(µ)] = n ln

(
1√
2π

)
−

(
n∑
i=1

x2i
2

)
+ nx̄µ− nµ2

2

µ̂ = x̄ =

∑n
i x

n

For the data set shown above µ̂ = x̄ = 1, and our null dictates that µ0 = 0. We can also calculate

that: 0.5∗
∑5

i=1 x
2
i = 14.90493 and 5 ln

(
1√
2π

)
= 4.59469 for our data set. This lets us conveniently

express the log-likelihood as:

ln[L(µ)] = 19.49962 +

(
5∑
i=1

xiµ

)
− 5µ2

2

ln[L(µ)] = 19.49962 + 5µ− 5µ2

2
= 19.49962 + µ− 2.5µ2

µ̂ = x̄ =

∑n
i x

n
ln[L(µ0)] = −19.4996

ln[L(µ̂)] = −16.9996

−2 ln Λ = 5
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You will recall (from lecture and the homework) that know the null distribution of the LR test
statistic in cases like this one (in which the MLE is not at a boundary, we are test a general model
against a more specific “nested” form of the model, and the likelihood curve looks like a normal).
The null distribution is simply χ2

k where the degrees of freedom, k, is simply to the number of
parameters that are free to vary in the more complex (less constrained) model (HA) but are fixed
in the more simple model (H0).

The critical value for χ2
1 = 3.84. Our observed test statistic is greater than this, so we can reject

the null.

It may be helpful to plot the ln[L(µ)] for different values of µ. In this case the plot is simply a
parabola with the maximum point at µ = 1:
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the horizontal line is at -18.9196, which is 1.92 below the maximum likelihood score. 1.92 is chosen
because twice this value corresponds to 3.84 (our critical value). If we were to test a null hypothesis
that µ takes a particular value, and the log-likelihood is below this threshold then we could reject
the null1. This means that we could construct a 95% confidence interval based on where the
log-likelihood intersects with the threshold score. In this case, the confidence interval would be
0.123644 ≤ µ ≤ 1.87636, which does not include our null point (µ = 0).

Let us pause a note that we just did a hypothesis test, but we could also view this as an exercise in
model selection. We contrasted a zero-parameter model N (0, 1) to a one-parameter model, N (µ, 1),
and asked whether we could reject the simpler model.- This is the likelihood-ratio test approach
to model testing. Essentially the attitude is: only use a more complex model if the data warrants
it, and we can assess this by performing a hypothesis test. If we reject the simpler model, then we
feel justified in using the more complex model.

OK, so it appears that we have evidence that the mean bill width has changed2. But if we have
evidence that the distribution of bill widths has changed, can we really trust the applicability of
the standard deviation from previous studies?

1We are supposed to construct our null befor the test - this is just a thought experiment.
2The use of the LR test statistic gives us confidence that we have used the most powerful test, but the fact that

the LR is monotonic function of the distance between x̄ and the hypothesized mean (µ) guarantees that we could
have conducted an equally powerful test using x̄ as our test statistic. So the typical Z-test that may have occurred
to you is just as good as the LR test in this case.
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It would be safer to admit that we don’t know the correct value of σ. We can do this, but we will
have a likelihood function with multiple parameters:

L(µ, σ) =

n∏
i=1

1√
2πσ2

e−
(xi−µ)

2

2σ2

ln[L(µ, σ)] = n ln

(
1

σ
√

2π

)
−

(
n∑
i=1

x2i
2σ2

)
+
nx̄µ

σ2
− nµ2

2σ2

= −n ln
(
σ
√

2π
)
− 1

2σ2

[(
n∑
i=1

x2i
2

)
+ nx̄µ− nµ2

2

]
This likelihood function is defined over a 2-D space of parameter values. Specifically, −∞ < µ <∞
and 0 ≤ σ <∞. We are interested in finding the maximum point. It could occur at a boundary of
parameters (although in this case the only boundary is σ = 0 and clearly the data are not consistent
with no variance in bill width, so that should not be a maximum likelihood point). For an “internal”
(non-boundary) point when we have a continuous and differentiable log-likelihood we are looking
for a point at which the slope of the log-likelihood with respect to each of the parameters is zero
(and the second derivatives are negative).

∂ ln[L(µ, σ)]

∂µ
=

nx̄

σ
− nµ

σ

nx̄

σ
− nµ̂

σ
= 0

µ̂ = x̄

In general, the first derivative with respect to one parameter will be a function of the other param-
eters. In this special case, the σ in the first derivative wrt µ cancel out. This makes some sense: µ
is the “center” of the distribution. While changing the variance of the model will affect how well
it fits the data, it won’t make us change where we think the center of the distribution is. So the
MLE of µ is simply x̄ regardless of the value of σ. When we want to estimate σ̂ we see that this is
not the case:

∂ ln[L(µ, σ)]

∂σ
=
−n
√

2π

σ
√

2π
+

∑n
i=1 (xi − µ)3

σ2

=
−n
σ

+

∑n
i=1 (xi − µ)2

σ3

=
1

σ

[
−n+

∑n
i=1 (xi − µ)2

σ3

]
1

σ̂

[
−n+

∑n
i=1 (xi − µ)2

σ̂2

]
= 0

The derivative equals zero if 1/σ̂ becomes zero3 or:

n =

∑n
i=1 (xi − µ)2

σ̂2

3Because σ < ∞ this point is never reached. But it does make sense that as you increase the variance to huge
values, the likelihood stops changing much.
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σ̂ =

√∑n
i=1 (xi − µ)2

n

This should look familiar – it is the “population variance” estimator.4 Note that the estimate of
the standard deviation does depend on the value of µ. If we are contemplating a value of µ that
is close to x̄, then the deviations between the observations and µ will be as small as we can make
them; thus small variances will be inferred.

If we are considering a value of µ that is very far from x̄, then the data will appear to be far from
the population mean. The best way to explain this data is to infer a large value for σ.

The maximum likelihood point, will jointly maximize both derivatives:

(µ̂, σ̂) = (x̄,

√∑n
i=1 (xi − x̄)2

n
)

(note that we substitute x̄ in for µ because we want σ̂ calculated at µ̂).

For the data set that we are contemplating:

(µ̂, σ̂) = (1, 2.22755)

ln [L(µ = 1, σ = 2.22755)] = −11.0992

Note that the standard deviation based on the data that we collected is much larger than 1, so our
previous assumption of N (µ, 1) may indeed be suspect.

How can we test if we can reject H0 : µ = 0? It may be tempting to simply use the value of σ̂ that
maximizes the likelihood:

ln [L(µ = 0, σ = 2.22755)] = −11.603

but this is not appropriate. Recall that σ̂ is a function of the data and of µ, so if we want to reject
µ = 0 we should use the standard deviation that fits best we with this value of µ:

σ̂µ0 = 2.44171

ln [L(µ = 0, σ = 2.44171)] = −11.5582

Note that the estimate of the standard deviation has increased. Now our LR test statistic is much
smaller:

−2 (ln [L(µ0, σ̂µ0)]− ln [L(µ̂, σ̂)]) = −2(−11.5582 + 11.0992)

= 0.918

This is not significant. Thus we cannot reject µ0 if we admit the the standard deviation may have
changed.

The trace plot below shows the log-likelihood as a function of σ for µ = −1 (black), µ = 0 (blue),
and µ = 1 (red). Note that the MLE of σ gets larger as the µ moves away from x̄ (which is 1 for

4We are used to seeing the sample variance, which looks similar but has n − 1 in the denominator. The sample
variance is an unbiased estimator, while the MLE is biased in this case (although the bias becomes negligible as n
increases).
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these data), but in all cases the log-likelihood is much lower if we consider σ = 0.
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The figure below shows three different tests of H0 : µ = 0. In blue we has a LR ratio test that
(incorrectly) fixes σ = 1 (the horizontal line is the threshold for rejection). Note that the confidence
interval is narrow, and we seem to have a lot of power to reject different values of µ. Statistical
power is good; but, in this case, we are getting the power by making an unjustified assumption
(that σ has not changed). LR tests that admit we do not know σ are shown in red (for cases in
which we estimate σ̂ for each different µ value that we consider), and green (for cases in which we
estimate (µ̂, σ̂) and then treat σ̂ as if it were applicable to all values of µ).
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The curve in red is the correct way to perform the test. In creating this curve we consider a wide
range of σ values, and we essentially admit that we don’t know what the truth is. In the green
curve, the µ̂ point “gets” to have its preferred σ, but all other points are evaluated at a standard
deviation (σ̂µ̂) that is not as compatible as possible. Thus, we get a narrow confidence interval,
but once again it is unjustified power.

If we were to do a simulation study only the method shown in red would have the correct Type I
error rate (the others would reject too often).

We could also do a hypothesis test of σ = 1. In this case we would reject.
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What about if we wanted to test the hypothesis that the distribution is still N (0, 1)? We can com-
pare the ln [L(µ = 0, σ = 1)] to ln [L(µ̂, σ̂)], as you might expect. Interestingly, we should compare
the test statistic to χ2

2 rather than χ2
1, because there would be two parameters that are constrained

in the null but not are estimated in our “free-est” model. The critical value would be 5.99 (blue
and pale areas below) rather than 3.84 (pale area below):
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It is possible that one group of researchers investigating H0 : µ = 0 would reject the null, another
group testing H0 : σ = 1 would reject their null, but a third group investigating H0 : µ = 0, σ = 1
would not reject! Thus it is important to frame your hypothesis carefully if you need to maximize
power. 5

We have a higher threshold of LR test statistic to surpass when we are comparing models that differ
my more dimensions. You can think of each parameter leading to a certain amount of sampling
error. Imagine that the null is true. Sampling error in a likelihood context means that θ̂ 6= θ, and
by definition of an MLE we know that ln[L(θ̂)] ≥ ln[L(θ)]. Thus each new parameter boosts the
log-likelihood score of the point that corresponds to the MLE above the log-likelihood evaluated at
the true parameter values.

You proved in the homework that the distribution of the difference in log-likelihoods between the
true point and the MLE was the square of a Z-score. When you sum up the effect of k parameters,
it is like summing the squares of k variables drawn from N (0, 1). This is the χ2

k distribution.

Summary of example

• We can use the LR Test for model choice and hypothesis testing - indeed it leads to the most
powerful hypothesis tests.

• If we do not know the value of a parameter that occurs in the likelihood equation, we can
estimate it.

• Even if we don’t care about the parameter (e.g. σ in our original question); its value can affect

5In the numerical example given above, any of these three nulls would be rejected.
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our hypothesis tests. Such parameters are typically referred to as “nuisance parameters”

• Adding more parameters can increase realism (or at least more accurately reflect our igno-
rance), but the cost is less certainty in our estimates of the parameters that we care about
(compare the red and green lines in the profile of lnL(µ), and pretend that the green line
represents a case in which we knew the correct value of the standard deviation). In other
problems, adding a nuisance parameter will actually increase E(|θ̂ − θ|)

• When the likelihood around the MLE looks “normalish” (not at a boundary and not a weird
likelihood function), then the the χ2

k distribution does a nice job of describing the null distri-
bution of the LRT statistic. We’ll talk about what to do when this is not the case later (e.g.
parametric bootstrapping).

Alternative forms of model selection

The following methods do not assume that models are nested:

Akaike Information Criterion

AIC(M |X) = 2k − 2 lnL(θ̂|X,M)

You want to minimize this score (find the model M that has the lowest AIC score for a dataset X)

Formulated based on information theory and measure how much information is lost when we use
model M to predict new data. It is a bit unclear what conditions are required to make the AIC the
appropriate choice More formally, the Kullback-Leibler distance is used to assess the discrepancy
between the “true” and each model; You can think of the 2k term as a penalty for overfitting the
data.

You can rank models by AIC and use the AIC scores as weights in multi-model inference.

Bayesians argue that the AIC ignores uncertainty in the nuisance parameters and thus tends to
prefer models that have too many parameters.

Bayes Factors

B01 is the Bayes factor in favor of model 0 over model 1:

B01 =
Pr(X|M0)

Pr(X|M1)

Note that this is just a likelihood ratio, but it is not the likelihood evaluated at it maximum, rather
it is:

Pr(X|M0) =

∫
Pr(X|θ0) Pr(θ0)dθ0) (1)
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where θ0 is the set of parameters in model 0.

Schwartz showed that this marginal likelihood (for the purpose of approximating Bayes factors)
can be approximated by assigning a score to each model:

BIC(M |X) = 2k ln(n)− 2 lnL(θ̂|X,M)

Better approximations of the Bayes factor are available, but they are usually much more expensive.

0.1 Approximating marginal likelihoods using Laplace’s method

For example, we can use Laplace’s method to approximate the integral in Eqn (1); this method is
based on approximating a function using a Taylor’s series for approximating the value of a function
at point x given its value and derivatives at a nearby point, x0:

g(x) ≈ g(x0) +
1

1!

(
dg(x0)

dx

)
(x− x0) +

1

2!

(
d2g(x0)

dx2

)
(x− x0)2 + . . .+

1

n!

(
dng(x0)

dxn

)
(x− x0)n

In particular, if we just use the first two derivatives in our approximation then:

g(x) ≈ g(x0) +

(
dg(x0)

dx

)
(x− x0) +

1

2

(
d2g(x0)

dx2

)
(x− x0)2

And if we are evaluating a likelihood function at its maximum point, then the first derivative should
be 0, so:

L(θ) ≈ L(θ̂) +
1

2

(
d2L(θ̂)

dθ2

)
(θ − θ̂)2

Laplace’s method notes that for some large constant M , and a function evaluated at its maximum,
θ̂:

g(θ) ≈ g(θ̂)− 1

2

∣∣∣∣∣d2g(θ̂)

dθ2

∣∣∣∣∣ (θ − θ̂)2
eMg(θ) ≈ e

Mg(θ̂)−M 1
2

∣∣∣∣ d2g(θ̂)dθ2

∣∣∣∣(θ−θ̂)2
= eMg(θ̂)e

−M 1
2

∣∣∣∣ d2g(θ̂)dθ2

∣∣∣∣(θ−θ̂)2∫ b

a
eMg(θ)dθ ≈ eMg(θ̂)

∫ b

a
e

−M

∣∣∣∣∣ d2g(θ̂)dθ2

∣∣∣∣∣(θ−θ̂)2
2 dθ

≈ eMg(θ̂)

√√√√ 2π

M
∣∣∣d2g(θ̂)dθ2

∣∣∣
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So if we are interested in the integral of the likelihood, we can take the log-posterior density as our
function g(θ): ∫

Pr(X|θ) Pr(θ)dθ =

∫
eln[Pr(X|θ) Pr(θ)]dθ

≈
√√√√√ 2π∣∣∣∣d2 ln[Pr(X|θ̃) Pr(θ̃)]dθ2

∣∣∣∣e
ln[Pr(X|θ̃) Pr(θ̃)]

≈

 2π∣∣∣∣d2 ln[Pr(X|θ̃) Pr(θ̃)]dθ2

∣∣∣∣


1/2 [
Pr(X|θ̃) Pr(θ̃)

]

where θ̃ denotes the point of maximum posterior probability density. In the more general case of a
k-dimensional model:∫

Pr(X|θ) Pr(θ)dθ ≈
(

2π
∣∣∣H(θ̃)

∣∣∣−1)k/2 [Pr(X|θ̃) Pr(θ̃)
]

Where H(θ̃) is the Hessian matrix of second derivatives around the point of maximum posterior
probability density.

You can also evaluate this around the MLE, θ̂, if the MAP is hard to find (or the prior information
is very vague).

See Kass and Raftery (1995) for more details (that reference served as the basis for the previous
section on Bayes Factors).
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