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Outline

• Intro

– What is Bayesian Analysis?

– Why be a Bayesian?

• What is required to do a Bayesian Analysis? (Priors)

• How can the required calculations be done? (MCMC)

• Prospects and Warnings



Simple Example:

Vesicouretural Reflux (VUR) - valves between the ureters

and bladder do not shut fully.

• leads to urinary tract infections

• if not corrected, can cause serious kidney damage

• effective diagnostic tests are available, but they are

expensive and invasive



• ≈ 1% of children will have VUR

• ≈ 80% of children with VUR will see a doctor about

an infection

• ≈ 2% of all children will see doctor about an infection

Should a child with 1 infection be screened for
VUR?



1% of the population has VUR 
Pr(V) = 0.01

v v v v v v v v v v

= 0.1% of the population



80% of kids with VUR 
get an infection
Pr(I|V) = 0.8

Pr(I|V) is a conditional probability



So, 0.8% of the population has
VUR and will get an infection

Pr(V)Pr(I|V) = 0.01 X 0.8 = 0.008
Pr(I,V) = 0.008

v v v v v v v v v v
I I I I I I I I

Pr(I,V) is a joint probability
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2% of the population gets 
an infection
Pr(I) = 0.02
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We just calculted that 
0.8% of kids have VUR
and get an infection
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The other 0.12% must
not have VUR

So, 40% of kids with
infections have VUR

Pr(V|I) = 0.4



Pr(V |I) =
Pr(V )Pr(I|V )

Pr(I)

Pr(V |I) =
0.01× 0.8

0.02

= 0.40



Pr(I) is higher for females.

Pr(I|~) = 0.03 Pr(I||) = 0.01

Pr(V |I,~) = 0.01×0.8
0.03

Pr(V |I,|) = 0.01×0.8
0.01

Pr(V |I,~) = 0.267 Pr(V |I,|) = 0.8



Bayes’ Rule

Pr(A|B) =
Pr(A)Pr(B|A)

Pr(B)

Pr(Hypothesis|Data) =
Pr(Hypothesis)Pr(Data|Hypothesis)

Pr(Data)



Pr(Tree|Data) =
Pr(Tree)Pr(Data|Tree)

Pr(Data)

We can ignore Pr(Data)

(2nd half of this lecure)



Pr(Tree|Data) ∝ Pr(Tree)Pr(Data|Tree)

Pr(Tree) is the prior probability of the tree.



Pr(Tree|Data) ∝ Pr(Tree)Pr(Data|Tree)

Pr(Tree) is the prior probability of the tree.

Pr(Data|Tree) is the likelihood of the tree.

Pr(Tree|Data) ∝ Pr(Tree)L(Tree)





Pr(Tree|Data) ∝ Pr(Tree)L(Tree)

Pr(Tree) is the prior probability of the tree.

L(Tree) is the likelihood of the tree.

Pr(Tree|Data) is the posterior probability of the tree.



The posterior probability is a great way to evaluate trees:

• Ranks trees

• Intuitive measure of confidence

• Is the ideal “weight” for a tree in secondary analyses

• Closely tied to the likelihood



Our models don’t give us L(Tree)

They give us things like L(Tree, κ, α, ν1, ν2, ν3, ν4, ν5)
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“Nuisance Parameters”

Aspects of the evolutionary model that we don’t

care about, but are in the likelihood equation.
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Marginalizing over (integrating out) nuisance

parameters

L(Tree) =
∫
L(Tree, κ)Pr(κ)dκ

• Removes the nuisance parameter

• Takes the entire likelihood function into

account



• Avoids estimation errors

• Requires a prior for the parameter



When there is substantial uncertainty in a parameter’s

value, marginalizing can give qualitatively different

answers than using the MLE.
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Trees ω

Joint posterior probability 
density for trees and ω
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The Bayesian Perspective

Pros Cons

Posterior probability Is it robust?

is the ideal measure

of support

Focus of inference is

flexible

Marginalizes over Requires a prior

nuisance parameters



Priors

• Probability distributions

• Specified before analyzing the data

• Needed for

– Hypotheses (trees)

– Parameters



Probability Distributions

Reflect the action of random forces



Probability Distributions

Reflect the action of random forces

OR

(if you’re a Bayesian)

Reflect your uncertainty
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Considerations when choosing a prior for a

parameter

• What values are most likely?
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p = Pr(Heads)

Subjective Prior on Pr(Heads)



Considerations when choosing a prior for a

parameter

• What values are most likely?

• How do you express ignorance?

– vague distributions
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“Non-informative” priors

• Misleading term

• Used by many Bayesians to mean “prior that

is expected to have the smallest effect on the

posterior”

• Not always a uniform prior



Considerations when choosing a prior for a

parameter

• What values are most likely?

• How do you express ignorance?

– vague distributions

– How easily can the likelihood

discriminate between parameter

values?



Jeffrey's (Default) Prior
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Example: The Kimura model
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n κ and φ map onto the predictions of
K80 very differently

Proportion transitions

Ratio of rates

Slide by Zwickl



K80 : κ and φ
n The likelihood surface

is tied to the model
predictions

n The curve shapes
(and integrals) are
quite different

n The ML estimates
are equivalent

Slide by Zwickl
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Minimizing the effect of priors

• Flat 6= non-informative

• Familiar model parameterizations may

perform poorly in a Bayesian analysis with

flat priors.



Considerations when choosing a prior for a

parameter

• What values are most likely?

• How do you express ignorance? (minimally

informative priors)

• Are some errors better than others?
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The Tree's Posterior vs
the Branch Length's Prior Mean
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We might make analyses more conservative by

• Favoring short internal branch lengths

• Placing some prior probability on “star”

trees (Lewis et al.)



We need to worry about sensitivity of our

conclusions to all “inputs”

• Data

• Model

• Priors

Often priors will be the least of our concerns
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The prior can be a benefit (not just a necessity)

of Bayesian analysis

• Incorporate previous information

• Make the analysis more conservative

But...



It can be hard to say “I don’t know”

Priors can strongly affect the analysis if...

• The prior strongly favors some parameter values, OR

• The data (via the likelihood) are not very informative

(little data or complex model)

Because Bayesian inference relies on marginalization, the

priors for all parameters can affect the posterior

probabilities of the hypotheses of interest.



How do we calculate a posterior probability?

Pr(Tree|Data) =
Pr(Tree)L(Tree)

Pr(Data)

In particular, how do we calculate Pr(Data)?



Pr(Data) is the marginal probability of the
data, so

Pr(Data) =
∑

i

Pr(Treei)L(Treei)

But this is a sum over all trees (there are lots of trees).

Recall that even L(Treei) involves multiple integrals.



Pr(D) =
∑ ∫ ∫ ∫ ∫ ∫

Posterior Probability Density

L(Treei, κ, α, ν1, ν2, ν3, ν4, ν5)Pr(Treei)Pr(κ)Pr(α)Pr(ν1)Pr(ν2) · · ·



Markov chain Monte Carlo

• Simulates a walk through parameter/tree

space.

• Lets us estimate posterior probabilities for

any aspect of the model

• Relies on the ratio of posterior densities

between two points



R =
Pr(Point2|Data)

Pr(Point1|Data)

R =

Pr(Point2)L(Point2)
Pr(Data)

Pr(Point1)L(Point1)
Pr(Data)

R =
Pr (Point2)L (Point2)

Pr (Point1)L (Point1)


