Pinvar approach

- Unlike the site-specific rates approach, this approach does not require you to assign sites to rate categories
- Assumes there are only two classes of sites:
 - invariable sites (evolve at relative rate 0)
 - variable sites (evolves at relative rate *r*)
- Remarks:
 - mean of relative rates = $(p_{invar})(0) + (1-p_{invar})(r) = 1$
 - this means that $r = 1/(1-p_{invar})$
 - if all sites are variable, $p_{invar} = 0$ and r = 1

- **Constant site** a site in which all of the taxa display the same character state.
- Invariable site a site in which only one character state is allowed. A site that cannot change state.

All invariable sites are constant, but not all constant sites have to be invariable.

$$Pr(i \rightarrow i | \text{ invariable}) = \frac{1}{4} + \frac{3}{4} e^{\frac{-40\nu}{3}}$$
$$= \frac{1}{4} + \frac{3}{4} e^{0}$$
$$= 1$$
$$Pr(i \rightarrow j | \text{ invariable}) = \frac{1}{4} - \frac{1}{4} e^{\frac{-40\nu}{3}}$$
$$= 0$$

 x_i is the data pattern for site *i*. General form:

$$\Pr(x_i|\mathsf{JC}+\mathsf{I}) = p_{\mathsf{inv}} \Pr(x_i|\mathsf{inv}) + (1-p_{\mathsf{inv}}) \Pr\left(x_i|\mathsf{JC}, \frac{\nu}{1-p_{\mathsf{inv}}}\right)$$

If x_i is a variable site:

$$\Pr(x_i|\mathsf{JC}+\mathsf{I}) = (1-p_{\mathsf{inv}})\Pr\left(x_i|\mathsf{JC},\frac{\nu}{1-p_{\mathsf{inv}}}\right)$$

If x_i is a constant site:

$$\Pr(x_i|\mathsf{JC}+\mathsf{I}) = p_{\mathsf{inv}} \Pr(x_i|\mathsf{inv}) + (1-p_{\mathsf{inv}}) \Pr\left(x_i|\mathsf{JC}, \frac{\nu}{1-p_{\mathsf{inv}}}\right)$$

Why
$$\frac{\nu}{1-p_{inv}}$$
 ?

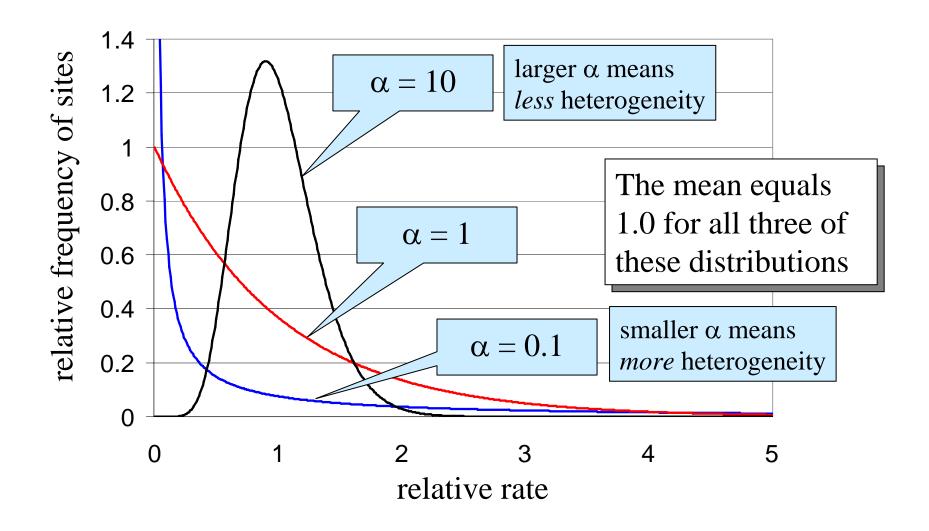
We want the mean rate of change to be 1.0 over all sites (so we can interpret the branch lengths in terms of the expected # of changes per site).

If r is the rate of change for the variable sites then:

$$1 = 0p_{inv} + r(1 - p_{inv})$$
$$= r(1 - p_{inv})$$
$$r = \frac{1}{1 - p_{inv}}$$

- We expect more "shades of grey" rather than the on-or-off view of the plnvar model.
- *a priori* we do not know which sites are fast and which are slow
- We may be able to characterize the *distribution* of rates across sites high variance or low variance.

Gamma distributions



$$f(r) = \frac{r^{\alpha - 1} \beta^{\alpha} e^{-\beta r}}{\Gamma(\alpha)}$$

mean = α/β
mean (in phylogenetics) = 1
(in phylogenetics) $\beta = \alpha$
variance = α/β^2

variance (in phylogenetics) = $1/\alpha$

Using Gamma-distributed rates across sites

• We usually use a discretized version of the gamma with 4-8 categories (the computation time increases linearly with the number of categories).

$$\Pr(x_i|JC + G) = \sum_{j}^{\text{ncat}} \Pr(x_i|JC, r_j \boldsymbol{\nu}) \Pr(r_j)$$

where:

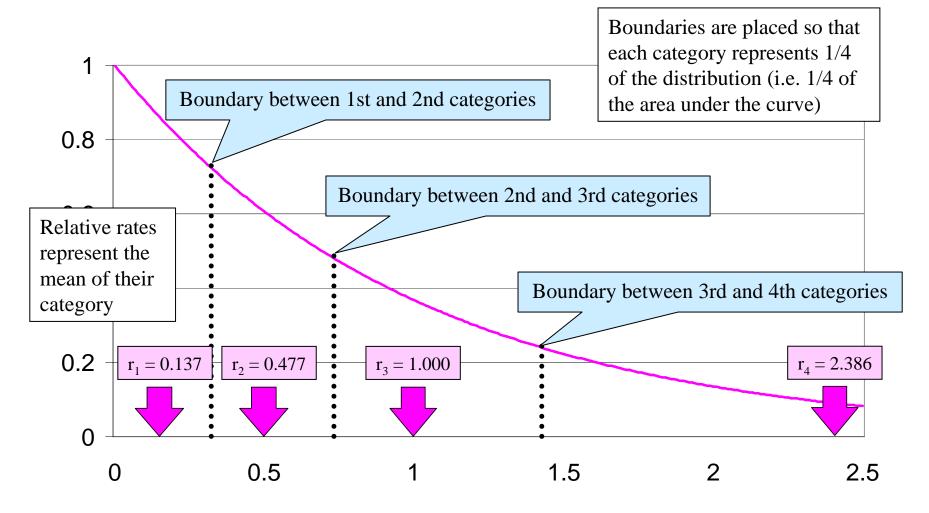
$$\sum_{j}^{\text{ncat}} r_j \Pr(r_j) = 1$$

So:

We "break up" the continuous gamma into intervals each of which has an equal probability, and use the mean rate within each interval as the representative rate for that rate category:

$$\Pr(r_j) = \frac{1}{\text{ncat}}$$
$$\Pr(x_i | JC + G) = \frac{1}{\text{ncat}} \sum_{j=1}^{\text{ncat}} \Pr(x_i | JC, r_j \boldsymbol{\nu})$$

Relative rates in 4-category case



Copyright © 2007 Paul O. Lewis

Discrete gamma rate heterogeneity in PAUP*

To use gamma distributed rates with 4 categories:

lset rates=gamma ncat=4;

To estimate the shape parameter:

lset shape=estimate;

To combine pinvar with gamma:

lset rates=gamma shape=0.2 pinvar=0.4;

Note: estimate, previous, or a specific value can be specified for both shape and pinvar

Copyright © 2007 Paul O. Lewis

Rate homogeneity in PAUP*

Just tell PAUP* that you want all rates to be equal and that you want all sites to be allowed to vary:

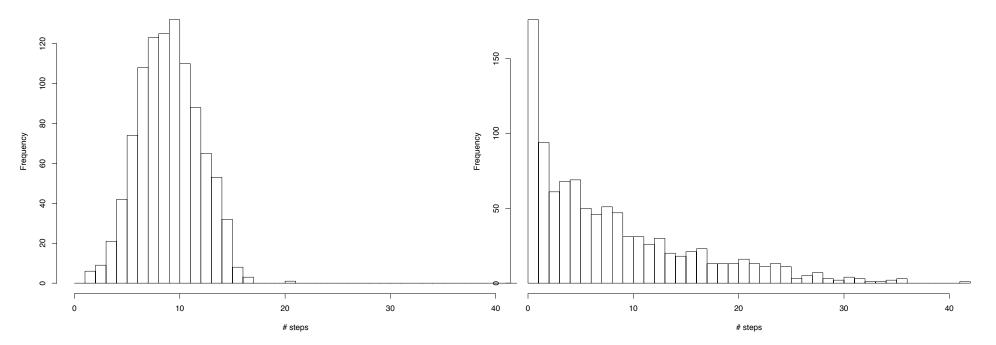
lset rates=equal pinvar=0;

Note: these are the default settings, but it is useful to know how to go back to rate homogeneity after you have experimented with rate heterogeneity! Rate heterogeneity summary

- 1. among-character rate heterogeneity is pervasive, and detectable;
- 2. failure to account for it can lead to biased branch length estimates (and hence incorrect tree inference);
- distance corrections can use estimates of rate heterogeneity (but this introduces a lot of variance);
- recognizing fast characters can be thought of as "downweighting" them;

Histogram of d\$steps

Histogram of d\$steps



Character fit on a 130 taxon tree (simulated with rate heterogeneity):

	Char. 67		Char. 882	
	Tree 1	Tree 2	Tree 1	Tree 2
Pscore	4	5	31	30

Based on these 2 characters, both trees have 35 steps.

Rates of evolution and the "reliability" of characters (continued)

Character fit on a 130 taxon tree (simulated with rate heterogeneity):

	Char. 67		Char. 882	
	Tree 1	Tree 2	Tree 1	Tree 2
Pscore	4	5	31	30
K2P InL	-23.92	-26.13	-117.22	-116.72

Preference for tree 1 (based on these two characters alone).

 $\Delta \ln L = 1.7$ under K2P.

Rates of evolution and the "reliability" of characters (continued)

Character fit on a 130 taxon tree (simulated with rate heterogeneity):

		Char. 67		Char. 882	
		Tree 1	Tree 2	Tree 1	Tree 2
Pscore		4	5	31	30
K2P InL		-23.92	-26.13	-117.22	-116.72
K2P+G InL		-23.538	-26.348	-98.46	-98.1
categ. %	1	14.2%	3.94%	0%	0%
	2	80.4%	84.2%	0%	0%
	3	5.3%	11.84%	0.000017%	0.000019%
	4	0.000039%	0.0002 %	99.999983%	99.999981%

Stronger preference for tree 1 (based on these two characters alone).

 $\Delta \ln L = 2.45$ under K2P+ Gamma.

1. Successive weighting of Farris (1989): iterative reweighting by the rescaled consistency index on the best tree:

Consistency index: $CI = \frac{\min. \# \text{ steps}}{\text{obs. } \# \text{ steps}}$ Retention index: $RI = \frac{\max. \# \text{ steps}-\text{obs. } \# \text{ steps}}{\max. \# \text{ steps}-\min. \# \text{ steps}}$

Rescaled consistency index: RC = (CI)(RI)

2. Implied weights of Goloboff (1993):

 $\frac{K}{K+\text{obs. }\# \text{ steps}-\text{min. }\# \text{ steps}}$

Goloboff, P. (1993). Estimating character weights during tree search. *Cladistics*, 9(1):83–91.