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Context

• We rarely know the “true” model to use for analyses.
• Model-averaging methods can be difficult to implement
and use.

• We can use the marginal likelihood to choose between
models.



The marginal likelihood is the
denominator of Bayes’ Rule

p(θ | D,M) =
P(D | θ,M)p(θ |M)

P(D |M)

θ is a set of parameter values in the model M

D is the data

P(D | θ,M) is the likelihood of θ.

p(θ,M) is the prior of θ.



The marginal likelihood assess the fit of
the model to the data by considering all
parameter values

P(D |M) =

∫
P(D | θ,M)p(θ |M)dθ



MCMC avoids the marginal like. calc.

p(θ∗|D,M)

p(θ | D,M)
=

P(D|θ∗,M)p(θ∗|M)
P(D|M)

P(D|θ,M)p(θ|M)
P(D|M)

p(θ∗|D,M)

p(θ | D,M)
=

P(D | θ∗,M)p(θ∗ |M)

P(D | θ,M)p(θ |M)



Bayesian model selection

Bayes Factor between two models:

B10 =
P(D |M1)

P(D |M0)

We could estimate P(D|M1) by drawing
points from the prior on θ and calculating
the mean likelihood.
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Drawing from the prior will often miss any of the trees with
high posterior density – massive sample sizes would be
needed.

Perhaps we can use samples from the posterior?



We can use the harmonic mean of the likelihoods of MCMC
samples to estimate P(D|M1).

However. . .



“The Harmonic Mean of the Likelihood:
Worst Monte Carlo Method Ever”

A post on Dr. Radford Neal’s blog
http://radfordneal.wordpress.com/2008/08/17/

the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever

“The total unsuitability of the harmonic mean estimator
should have been apparent within an hour of its discovery.”

http://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever
http://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever


Harmonic mean estimator of the
marginal likelihood

• appealing because it comes “for free” after we have
sampled the posterior using MCMC,

• unfortunately the estimator can have a huge variance
associated with it in some (very common) cases. For
example if:
• the vast majority of parameter space has very low

likelihood, and
• a very small region has high likelihoods.



Importance sampling to approximate a
difficult target distribution

1 Simulate points from an easy distribution.
2 Reweight the points by the ratio of densities between
the easy and target distribution.

3 Treat the reweighted samples as draws from the target
distribution.



−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Importance and target densities

x

de
ns

ity



−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Importance and target densities

x

de
ns

ity

−3 −2 −1 0 1 2 3

0
2

4
6

8
10

12

Importance weights

x

w
ei

gh
t



−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Importance and target densities

x

de
ns

ity

−3 −2 −1 0 1 2 3

0
2

4
6

8
10

12

Importance weights

x

w
ei

gh
t

−3 −2 −1 0 1 2 3

0
2

4
6

8
10

12

Samples from importance distribution

x

−3 −2 −1 0 1 2 3

0
2

4
6

8
10

12

Weighted samples

x

w
ei

gh
t



Importance sampling

The method works well if the importance distribution is:
• fairly similar to the target distribution, and
• not “too tight” to allow sampling the full range of the
target distribution



In phylogenetics our posterior distribution is too peaked
and our prior is too vague to allow us to use them in
importance sampling:
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Steppingstone sampling uses a series of
importance sampling runs
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Steppingstone sampling (Xie et al. 2011, Fan et al. 2011)
blends two distributions:
• the posterior, P(D | θ,M1)P(θ,M1)

• a tractable reference distribution, π(θ)

pβ(θ | D,M1) =
[P(D | θ,M1)P(θ,M1)]

β [π(θ)](1−β)

cβ

p1(θ | D,M1) is the posterior.
c1 is the marginal likelihood of the model.

p0(θ | D,M1) is the reference distribution.
c0 is 1.



Steppingstone sampling (Xie et al. 2011, Fan et al. 2011)
blends two distributions:
• the posterior, P(D | θ,M1)P(θ,M1)

• a tractable reference distribution, π(θ)

pβ(θ | D,M1) =
[P(D | θ,M1)P(θ,M1)]

β [π(θ)](1−β)

cβ

P(D |M1) =
c1
c0

=

(
c1
c0.38

)(
c0.38

c0.1

)(
c0.1
c0.01

)(
c0.01

c0

)
=

(
c1

���c0.38

)(
���c0.38

��c0.1

)(
��c0.1

���c0.01

)(
���c0.01

c0

)



Run MCMC with different β values
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P(D |M) =
(

P(D|M)
c0.38

)(
c0.38
c0.1

)(
c0.1
c0.01

) (
c0.01

1

)

Photo by Johan Nobel http://www.flickr.com/photos/43147325@N08/4326713557/ downloaded from Wikimedia

http://www.flickr.com/photos/43147325@N08/4326713557/


Reference distributions in Steppingstone
sampling

In the original steppingstone (Xie et al 2011):

reference = prior

In generalized steppingstone (Fan et al 2011) it can be any
distribution:
• Should be centered around the areas with high
probability,

• Must be a probability distribution with a known
normalizing constant,

• Should be easy to draw sample from.



The log Bayes Factor for a complex model compared to a simple
(true) model. Estimated twice (by Fan et al, 2011)

Harmonic mean: Original Steppingstone:
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Original Steppingstone: Generalized Steppingstone:
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Figure from Fan et al., 2011



Steppingstone sampling when the tree is
not known

• generalized steppingstone assumes a
fixed tree,

• the original steppingstone can very slow
when the tree is not known.



Tree-Centered
Independent-Split-Probability (TCISP)
distribution

Input: a tree with probabilities for each
split (from a pilot MCMC run).

Output: a probability distribution over all
tree topologies.
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Calculating a tree’s probability
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Calculating a tree’s probability
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Calculating a tree’s probability
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Calculating a tree’s probability
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focal tree tree with shared splits

P = 0.2× 0.9× 0.4× 0.5× 0.6× 0.2× 0.7× 0.9



Counting trees the max. distance from a
tree

• Bryant and Steel(2009) provide an
O(n5) algorithm.

• Bryant contributed an O(n2) algorithm.



Multitree steppingstone sampling
• Has been validated on small data sets.
• Minimum running time is unknown.
• Appears to be a practical way to approximate
a model’s marginal likelihood.

• The TCISP distribution could be useful in
other context.

• The method assumes unrooted, fully resolved
trees,

• implemented in phycas
(http://www.phycas.org)

Holder, Lewis, Swofford, Bryant (in prep)

http://www.phycas.org


Marginal likelihoods
• Harmonic mean estimator is not reliable
• AIC is preferable to the harmonic mean
estimator (Guy Baele et al MBE 2012)

• Thermodynamic Integration (aka Path
Sampling) is an accurate method (Lartillot and
Philippe, 2006; Rodrigue and Aris-Brousou)

• Model-jumping approaches avoid the need to
calculate marginal likelihoods.

• Steppingstone and/or Path Sampling are
available in MrBayes, Beast, ∗Beast, Migrate,
and other Bayesian software for evolutionary
analyses



Thanks!

Thanks to the organizers, NSF, and to you
(for listening to stats on a Saturday
morning)



This slide shows the math to demonstrate that we can use
the harmonic mean to estimate the marginal likelihood,
P (D). Consider, a model that has a discrete parameter v
that can take two values (r and b). h in the harmonic mean
of the likelihoods for parameters values sampled from the
posterior distribution

h =
1

P(v = r|D)
[

1
P(D|v=r)

]
+ P(v = b|D)

[
1

P(D|v=b)

]
=

1[
P(v=r)P(D|v=r)

P(D)

] [
1

P(D|v=r)

]
+
[

P(v=b)P(D|v=b)
P(D)

] [
1

P(D|v=b)

]
=

1[
P(v=r)
P(D)

]
+
[

P(v=b)
P(D)

]
=

P(D)

P(v = r) + P(v = b)

= P(D)



The harmonic mean as an importance
sampling estimator

The marginal likelihood is the expected value of the
likelihood over points drawn from the prior:

P(D) = Ep(θ)[P(D|θ)] =

∫
P(D|θ)P(θ)dθ

In importance sampling, we draw parameter values θ from
a different density, g(θ), but multiple the points by a
weight, w:

Ep(θ)[P(D|θ)] =
1
n

∑n
i=1 P(D|θi)wi

b

where b is a normalization constant.



The appropriate weight is the ratio of the target density
and our importance density:

wi =
P(θi)

g(θi)

And it turns out that the normalization constant is simply
a sum of the importance weights:

b =
1

n

n∑
i=1

P(θi)

g(θi)

Ep(θ)[P(D|θ)] =

1
n

∑n
i=1

P(D|θi)P(θi)
g(θi)

1
n

∑n
i=1

P(θi)
g(θi)



Ep(θ)[P(D|θ)] =

1
n

∑n
i=1

P(D|θi)P(θi)
g(θi)

1
n

∑n
i=1

P(θi)
g(θi)

If the importance distribution, g(θ), is the prior then the
importance weights are all 1:

Ep(θ)[P(D|θ)] =

1
n

∑n
i=1

P(D|θi)P(θi)
P(θi)

1
n

∑n
i=1

P(θi)
P(θi)

=
1

n

n∑
i=1

P(D|θi)

Recall that the points, θ, are draw by sampling from the
importance distribution, so this sum of likelihoods is
already weighted by the prior.



Ep(θ)[P(D|θ)] =

1
n

∑n
i=1

P(D|θi)P(θi)
g(θi)

1
n

∑n
i=1

P(θi)
g(θi)

If the importance distribution, g(θ) is the posterior then:

Ep(θ)[P(D|θ)] =

1
n

∑n
i=1

P(D|θi)P(θi)
P(D|θi)P(θi)

1
n

∑n
i=1

P(θi)
P(D|θi)P(θi)

=
1

1
n

∑n
i=1

P(θi)
P(D|θi)P(θi)

=
n∑n

i=1
1

P(D|θi)

This is the justification of the harmonic mean estimator of
the marginal likelihood.



Lartillot and Philippe’s thermodynamic
integration

Like the steppingstone sampler, the thermodyanmic
integration method (or path sampling) use power posterior
densities with 0 ≤ β ≤ 1:

pβ(θ|D) =
P(D|θ)βP(θ)

cβ

with c0 = 0 and c1 = P(D).
Lartillot and Philippe showed that

∂ ln cβ
∂β

= Epβ

[
∂ ln

[
P(D|θ)βP(θ)

]
∂β

]
Note that by definition of a definite integral:∫ 1

0

∂ ln cβ
∂β

dβ = ln c1 − ln c0 = ln P(D)



Thus,

ln P(D) =

∫ 1

0

Epβ

[
∂ ln

[
P(D|θ)βP(θ)

]
∂β

]
dβ

By differentiating we see that:

∂ ln
[
P(D|θ)βP(θ)

]
∂β

=
∂[ln P(θ) + β ln P(D|θ)]

∂β

= ln P(D|θ)

The integration is not analytically tractable, but we can
calculate Epβ [ln P(D|θ)] by conducting MCMC at the a
power posterior distribution pβ and taking an average of
the log-likelihoods.
Then we can use standard numerical integration techniques
to estimate the integral.



This integration is not analytically tractable, but we can
calculate Epβ [ln P(D|θ)] by conducting MCMC at the a
power posterior distribution pβ and taking an average of
the log-likelihoods.
Then we can use standard numerical integration techniques
to estimate the integral.


