

Warning: software often displays unrooted trees like this:

We use trees to represent genealogical relationships in several contexts.

Domain	Sampling	tree	The cause of
			splitting
Pop. Gen.	> 1 indiv/sp.	Gene tree	> 1 descendants of
	Few species		a single gene copy
Phylogenetics	Few indiv/sp.	Phylogeny	speciation
	Many species		
Mol. Gen.	>1 locus/sp. $>$	Gene tree.	speciation or
	1 species	Gene family	duplication
		tree	

Phylogenies are an inevitable result of molecular genetics

Present

Present

Present

Genealogies within a population

Genealogies within a population

Biparental inheritance would make the picture messier, but the genealogy of the gene copies would still form a tree (if there is no recombination).

terminology: genealogical trees within population or species trees

It is tempting to refer to the tips of these gene trees as alleles or haplotypes.

- allele an alternative form a gene.
- haplotype a linked set of alleles

But both of these terms require a differences in sequence.

The gene trees that we draw depict genealogical relationships – regardless of whether or not nucleotide differences distinguish the "gene copies" at the tips of the tree.

A "gene tree" within a species tree

terminology: genealogical trees within population or species trees

- coalescence merging of the genealogy of multiple gene copies into their common ancestor. "Merging" only makes sense when viewed *backwards in time*.
- "deep coalescence" or "incomplete lineage sorting" refer to the *failure* of gene copies to coalesce within the duration of the species the lineages coalesce in an ancestral species

terminology: genealogical trees within population or species trees

- coalescence merging of the genealogy of multiple gene copies into their common ancestor. "Merging" only makes sense when viewed *backwards in time*.
- "deep coalescence" or "incomplete lineage sorting" refer to the *failure* of gene copies to coalesce within the duration of the species the lineages coalesce in an ancestral species

A "gene family tree"

Eutherian β - δ globin

Marsupial β -globin Monotreme ε^{p} - β^{p} globin

Eutherian ε-globin ir g

Opazo, Hoffmann and Storz "Genomic evidence for independent origins of β -like globin genes in monotremes and therian mammals" PNAS **105(5)** 2008

Eutherian y-globin

Marsupial ɛ-globin

Sauropsida β-like globins

Monotreme and marsupial ω-globin Amphibian β-like globins Fish β-like globins

Opazo, Hoffmann and Storz "Genomic evidence for independent origins of β -like globin genes in monotremes and therian mammals" PNAS **105(5)** 2008

- duplication the creation of a new copy of a gene within the same genome.
- homologous descended from a common ancestor.
- paralogous homologous, but resulting from a gene duplication in the common ancestor.
- orthologous homologous, and resulting from a speciation event at the common ancestor.

Multiple contexts for tree estimation (again):

	The cause of splitting	Important caveats
"Gene tree"	DNA replication	recombination is usually ignored
Species tree Phylogeny	speciation	recombination, hybridization, and deep coalescence cause conflict in the data we use to estimate phylogenies
Gene family tree	speciation or duplication	recombination (eg. domain swapping) is not tree-like