
Some of these slides have been borrowed from Dr.
Paul Lewis, Dr. Joe Felsenstein. Thanks!

Paul has many great tools for teaching phylogenetics at his

web site:

http://hydrodictyon.eeb.uconn.edu/people/plewis
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Gene copies in a population of 10 individuals

Time

A random−mating population
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Going back one generation
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... and one more

Time

A random−mating population

Week 9: Coalescents – p.13/60



The genealogy of gene copies is a tree

Time

Genealogy of gene copies, after reordering the copies
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Ancestry of a sample of 3 copies

Time

Genealogy of a small sample of genes from the population
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Here is that tree of 3 copies in the pedigree

Time
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Kingman’s coalescent
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The Wright-Fisher model

This is the canonical model of genetic drift in populations. It was
invented in 1930 and 1932 by Sewall Wright and R. A. Fisher.
In this model the next generation is produced by doing this:

Choose two individuals with replacement (including the possibility
that they are the same individual) to be parents,

Each produces one gamete, these become a diploid individual,

Repeat these steps until N diploid individuals have been produced.

The effect of this is to have each locus in an individual in the next
generation consist of two genes sampled from the parents’ generation at
random, with replacement.
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The coalescent – a derivation

The probability that k lineages becomes k− 1 one generation earlier is
(as each lineage “chooses” its ancestor independently):

k(k− 1)/2× Prob (First two have same parent, rest are different)

(since there are
(
k
2

)
= k(k− 1)/2 different pairs of copies)

We add up terms, all the same, for the k(k− 1)/2 pairs that could
coalesce:

k(k− 1)/2 × 1 × 1
2N × (

1− 1
2N

)
× (

1− 2
2N

) × · · · × (
1− k−2

2N

)
so that the total probability that a pair coalesces is

= k(k− 1)/4N + O(1/N2)
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Can probabilities of two or more lineages coalescing

Note that the total probability that some combination of lineages
coalesces is

1− Prob (Probability all genes have separate ancestors)

= 1−
[

1×
(

1− 1

2N

)(
1− 2

2N

)
. . .

(
1− k− 1

2N

)]

= 1 −
[

1 − 1 + 2 + 3 + · · ·+ (k− 1)
2N

+ O(1/N2)
]

and since
1 + 2 + 3 + . . . + (n− 1) = n(n− 1)/2

the quantity

= 1 − [
1− k(k− 1)/4N + O(1/N2)

] ' k(k− 1)/4N + O(1/N2)
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Can calculate how many coalescences are of pairs

This shows, since the terms of order 1/N are the same, that the events
involving 3 or more lineages simultaneously coalescing are in the terms
of order 1/N2 and thus become unimportant if N is large.

Here are the probabilities of 0, 1, or more coalescences with 10 lineages
in populations of different sizes:

N 0 1 > 1
100 0.79560747 0.18744678 0.01694575

1000 0.97771632 0.02209806 0.00018562
10000 0.99775217 0.00224595 0.00000187

Note that increasing the population size by a factor of 10 reduces the
coalescent rate for pairs by about 10-fold, but reduces the rate for triples
(or more) by about 100-fold.
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The coalescent

To simulate a random genealogy, do the following:

1. Start with k lineages

2. Draw an exponential time interval with mean 4N/(k(k− 1))
generations.

3. Combine two randomly chosen lineages.

4. Decrease k by 1.

5. If k = 1, then stop

6. Otherwise go back to step 2.
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Random coalescent trees with 16 lineages
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Coalescence is faster in small populations

Change of population size and coalescents

Ne

time

the changes in population size will produce waves of coalescence

time

Coalescence events

time

the tree

The parameters of the growth curve for   Ne  can be inferred by
likelihood methods as they affect the prior probabilities of those trees
that fit the data.
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Migration can be taken into account

Time

population #1 population #2
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Recombination creates loops

Recomb.

Different markers have slightly different coalescent trees
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If we have a sample of 50 copies

 
50−gene sample in a coalescent tree
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The first 10 account for most of the branch length

10 genes sampled randomly out of a 

50−gene sample in a coalescent tree
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... and when we add the other 40 they add less length

10 genes sampled randomly out of a 

50−gene sample in a coalescent tree

(orange lines are the 10−gene tree)
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We want to be able to analyze human evolution

Africa

Europe Asia

"Out of Africa" hypothesis

(vertical scale is not time or
    evolutionary change)

Week 9: Coalescents – p.30/60



coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree
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coalescent and “gene trees” versus species trees

Consistency of gene tree with species tree

coalescence time
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If the branch is more than Ne generations long ...
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Labelled histories

Labelled Histories (Edwards, 1970; Harding, 1971)

Trees that differ in the time−ordering of their nodes

A B C D

A B C D

These two are the same:

A B C D

A B C D

These two are different:
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Inconsistency of estimation from concatenated gene
sequences

Degnan and Rosenberg (2006) show that the most likely topology for a
gene tree is not necessarily the tree that agrees with the phylogenetic tree.

For some phylogenetic shapes (e.g. imbalanced trees with short internal
nodes) there exists (at least) one other tree shape that has a higher
probability of agreeing with a gene tree.

Argues for explicitly considering the coalescent process in phylogenetic
inference.



How do we compute a likelihood for a population sample?
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If we have a tree for the sample sequences, we can
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The basic equation for coalescent likelihoods

In the case of a single population with parameters
Ne effective population size
µ mutation rate per site

and assuming G′ stands for a coalescent genealogy and D for the
sequences,

L = Prob (D | Ne, µ)

=
∑
G′

Prob (G′ | Ne) Prob (D | G′, µ)

︸ ︷︷ ︸ ︸ ︷︷ ︸
Kingman′s prior likelihood of tree
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Rescaling the branch lengths

Rescaling branch lengths of G′ so that branches are given in expected
mutations per site, G = µG′ , we get (if we let Θ = 4Neµ )

L =
∑
G

Prob (G | Θ) Prob (D | G)

as the fundamental equation. For more complex population scenarios
one simply replaces Θ with a vector of parameters.
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The variability comes from two sources

Ne

Ne
can reduce variability by looking at

(i) more gene copies, or

(ii)  more loci

(2)  Randomness of coalescence of lineages

affected by the

can reduce variance of

branch by examining more sites

number of mutations per site per

mutation rate  u  
(1)   Randomness of mutation

affected by effective population size 

coalescence times allow estimation of  
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We can compute the likelihood by averaging over coalescents
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Rearrangement to sample points in tree space

A conditional coalescent rearrangement strategy 
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Dissolving a branch and regrowing it backwards

First pick a random node (interior or tip) and remove its subtree 
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We allow it coalesce with the other branches

Then allow this node to re−coalesce with the tree 
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and this gives anothern coalescent

The resulting tree proposed by this process
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An example of an MCMC likelihood curve
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Results of analysing a data set with 50 sequences of 500 bases
which was simulated with a true value of  Θ = 0.01
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Major MCMC likelihood or Bayesian programs

LAMARC by Mary Kuhner and Jon Yamato and others.
Likelihood inference with multiple populations, recombination,
migration, population growth. No historical branching events, yet.

BEAST by Andrew Rambaut, Alexei Drummond and others.
Bayesian inference with multiple populations related by a tree.
Support for serial sampling (no migration or recombination yet).

genetree by Bob Griffiths and Melanie Bahlo. Likelihood inference
of migration rates and changes in population size.

migrate by Peter Beerli. Likelihood inference with multiple
populations and migration rates.

IM and IMa by Rasmus Nielsen and Jody Hey. Two populations
allowing both historical splitting and migration after that.
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“Skyline” and “Skyride” plots in BEAST
Classical Skyline Plot
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Figure from Minin, Bloomquist, and Suchard 2008



BEST Liu and Pearl (2007); Edwards et al. (2007)

• X – sequence data
• G – a genealogy (gene tree – with branch lengths)
• S – a species tree
• θ – demographic parameters
• Λ – parameters of molecular sequence evolution

Pr(S,θ|X) =
Pr(S,θ) Pr(X|S,θ)

Pr(X)

= Pr(S) Pr(θ)
∫

Pr(X|G) Pr(G|S,θ)dG

∝ Pr(S) Pr(θ)
∫ [∫

Pr(X|G,Λ) Pr(Λ)dΛ
]

Pr(G|S,θ)dG



BEST – importance sampling

1. Generate a collection of gene trees, G, using an approximation of the
coalescent prior

2. Sample from the distribution of the species trees conditional on the gene
trees, G.

3. Use “importance weights” to correct the sample for the fact that an
approximate prior was used



BEST – importance sampling

1. Generate a collection of gene trees, G, using an approximation of the
coalescent prior
(a) Use a tweaked version of MrBayes to sample N sets of gene trees,
G, from

†
Pr(G|X) =

Pr†(G) Pr(X|G)
Pr†(X)

(b) Pr†(G) is an approximate prior on gene trees from using a “maximal”
species tree.

2. Sample from the distribution of the species trees conditional on the gene
trees, G.

3. Use “importance weights” to correct the sample for the fact that an
approximate prior was used



BEST – importance sampling

1. Generate a collection of gene trees, G, using an approximation of the
coalescent prior

2. Sample from the distribution of the species trees conditional on the gene
trees, G.
(a) From each set of gene trees (Gj for 1 ≤ j ≤ N) generate k species

trees using coalescent theory:

Pr(Si|Gj) =
Pr(Si) Pr(Gj|Si)

Pr(Gj)

3. Use “importance weights” to correct the sample for the fact that an
approximate prior was used



BEST – importance sampling

1. Generate a collection of gene trees, G, using an approximation of the
coalescent prior

2. Sample from the distribution of the species trees conditional on the gene
trees, G.

3. Use “importance weights” to correct the sample for the fact that an
approximate prior was used
(a) Estimate P̂r(Gj) by using the harmonic mean estimator from the

MCMC in step 2.
(b) Compute a normalization factor

β =
N∑

j=1

P̂r(Gj)
Pr(Gj)

(c) Reweight all sampled species trees by

P̂r(Gj)
Pr(Gj)

β



BEST – conclusions

1. very expensive computationally (long MrBayes runs are needed)
2. should correctly deal with the variability in gene tree caused by the

coalescent process.



∗BEST

Similar model to BEST, but much more efficient implementation.

Both will be very sensitive to migration, but they represent the state-of-the-
art for estimating species trees from gene trees.



Gene tree in a species tree w/ variable population size

Figure from Heled and Drummond 2010



Multiple gene tree in a species tree w/ variable
population size

Figure from Heled and Drummond 2010
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