Module 13: Molecular Phylogenetics

http://evolution.gs.washington.edu/sisg/2013/

MTH Thanks to Paul Lewis, Joe Felsenstein, Peter Beerli,
Derrick Zwickl, and Joe Bielawski for slides

Wednesday July 17: Day |

1:30 to 3:00PM Intro.
Parsimony
Distance—based methods
3:30PM to 5:00 Tree Searching
PAUP*

Thursday July 18: Day Il

8:30 to 10AM Models
Likelihood
10:30AM to Noon Likelihood
Likelihood in Phylip/PAUP*

1:30 to 3PM Testing Trees
Bootstrapping in Phylip/PAUP*
3:30 to 5PM More Realistic Models
5:00 to 6PM Tutorial (questions and answers session)

Friday July 19: Day Il

8:30 to 10AM Bayesian Phylogenetics
10:30AM to Noon MrBayes Lab

1:30 to 3PM Divergence Time Estimation
3:30 to 5PM The Coalescent

The Comparative Method
Future Directions



Darwin's 1859 “On the Origin of Species” had one figure:
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Human family tree

from Haeckel, 1874
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Fig. 20, p. 171, in Gould, S. J. 1977.
Ontogeny and phylogeny.
Harvard University Press, Cambridge, M/
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Are desert green algae adapted to high light intensities?

Species Habitat Photoprotection
1 terrestrial xanthophyll
2 terrestrial xanthophyll
3 terrestrial xanthophyll
4 terrestrial xanthophyll
5 terrestrial xanthophyll
6 aquatic none
7 aquatic none
8 aquatic none
9 aquatic none
10 aquatic none

Phylogeny reveals the events that generate the pattern

XXX X Xa o a aa= Xa Xa XXa Xa o=
TTTTTAAAAA TATATTATAA
pair of changes. 5 pairs of changes.

.oincidence? Much more convincing



AXOR 35 4_ GPCR with unknown ligan

H3
M1
H1
SHT1A Natural ligand known
5HT2 to be histamine
5HT5
Which ligand for AXOR35
SHT6 would you test first?
H2
Beta 1 Wise, A., Jupe, S. C., and Rees, S. 2004.
The identification of ligands at orphan
D2 G-protein coupled receptors. Annu.
D3 Rev. Pharmacol. Toxicol. 44:43-66.

Many evolutionary questions require a phylogeny

Estimating the number of times a trait evolved

Determining whether a trait tends to be lost more often than gained, or
vice versa

Estimating divergence times

Distinguishing homology from analogy

Inferring parts of a gene under strong positive selection



Tree terminology

terminal node

(or leaf,
degree 1)

\

(or vertex, degree 3+)

interior node

split (bipartition)
also written AB|CDE
or portrayed **---

N

branch (edge)

\ root node of tree (degree 2)

Monophyletic groups (“clades”): the basis of
phylogenetic classification

O O e e o6 o




Branch rotation does not matter

Rooted vs unrooted trees




Warning: software often displays unrooted trees like this:
/ Chara
|
| / Chlorella
| S 16
| | \ Volvox
+ 17
28 \ Anabaena
|
| / Conocephalum
| |
| | / Bazzania
O 27 |
| | / Anthoceros
| | |
\-——-26 | / Osmunda
| I /= 18
| | | \ Asplenium
| | |
\ === 25 | [==———— Ginkgo
[ /-——-23 /- 19
| | | | Bttt Picea
| | | |
| | \—————— 22 [———————————e Iris
| | | /---20
\---24 | [ \ Zea
| \—————— 21
| \ Nicotiana
|
\ Lycopodium

We use trees to represent genealogical relationships in several contexts.

tree

Domain Sampling tree The  cause  of
splitting
Population Genetics | > 1 indiv/sp. | Gene tree > 1 descendants of
Few species a single gene copy
Phylogenetics Few indiv/sp. | Phylogeny speciation
Many species
Molecular Evolution | > 1 locus/sp. > | Gene tree. | speciation or
1 species Gene  family | duplication




Phylogenies are an inevitable result of molecular genetics

Genealogies within a population

Present

: :4 \>y

Past

Biparental inheritance would make the picture messier, but the genealogy
of the gene copies would still form a tree (if there is no recombination).



terminology: genealogical trees within population or
species trees

It is tempting to refer to the tips of these gene trees as alleles or haplotypes.

e allele — an alternative form a gene.
e haplotype — a linked set of alleles

But both of these terms require a differences in sequence.

The gene trees that we draw depict genealogical relationships — regardless
of whether or not nucleotide differences distinguish the “gene copies” at

the tips of the tree.

A “gene tree” within a species tree
Gorilla Chimp Human

2 4 1 3 2 1 3152 4

4

“deep coalescence
coalescence events



terminology: genealogical trees within population or
species trees

e coalescence — merging of the genealogy of multiple gene copies into their
common ancestor. “Merging” only makes sense when viewed backwards
in time.

e “deep coalescence” or “incomplete lineage sorting” refer to the failure of
gene copies to coalesce within the duration of the species — the lineages
coalesce in an ancestral species

Inferring a species tree while accounting for the
coalescent

(a) (b)
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Figure 2 from Heled and Drummond (2010)



A “gene family tree”

Eutherian B-3 globin

1.00

Marsupial B-globin

Monotreme &-B"globin

: . "Genomic evidence for
Eutherian e-globin

and therian mammals”

PNAS 105(5) 2008

0.99 Eutherian y-globin

1.00

Marsupial e-globin

Sauropsida B-like globins

Monotreme and marsupial ®-globin
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Opazo, Hoffmann and Storz

independent origins of S5-like
globin genes in monotremes

The €-globin and B-globin genes arose
via duplication of a proto B—globin gene

in the ancestor of therian mammals.

<> Speciation Event

@ Gene Duplication

The SP- and BP—globin genes arose via
duplication of a proto B-glohin gene in
the monotreme lineage.

Opazo, Hoffmann and Storz “"Genomic evidence for independent origins of 3-like

globin genes in monotremes and therian mammals” PNAS 105(5) 2008



terminology: trees of gene families

e duplication — the creation of a new copy of a gene within the same
genome.

e homologous — descended from a common ancestor.

e paralogous — homologous, but resulting from a gene duplication in the
common ancestor.

e orthologous — homologous, and resulting from a speciation event at the
common ancestor.

Joint estimation of gene duplication, loss, and species
trees using PHYLDOG

Ornithorhynchus anatinus —

Ornithorhynchus anatinus _'_l'
Ormnithorhynchus anatinus
Ormnithorhynchus anatinus
Ormithorhynchus anatinus
Ornithorhynchus anatinus

Spermophilus tridecemiineatus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Cavia porcellus
Cawvia porcellus

Oryctolagus cuniculus
Oryctolagus cuniculus
Callithrix jacchus
Home sapiens
Homao sapiens
Homao sapiens
Pongo pygmaeus
Bos taurus
Bos taurus
Canis familiaris
Equus caballus
Equus caballus

Menodelphis domestica — —

0.3

Figure 2A from Boussau et al. (2013)



Multiple contexts for tree estimation (again):

The cause of
splitting

Important caveats

“Gene tree” or
“a coalescent”

DNA replication

recombination is usually ignored

Species tree
Phylogeny

speciation

recombination, hybridization, lateral
gene transfer, and deep coalescence
cause conflict in the data we use to
estimate phylogenies

Gene family tree

speciation or
duplication

recombination  (eg. domain

swapping) is not tree-like

Joint estimation of gene duplication, loss, and
coalescence with DLCoalRecon

A

p=1/2N

p=1
a, b, C, b C,
A B C B C
Locus 1 Locus 2

Figure 2A from Rasmussen and Kellis (2012)



Future: improved integration of DL models and
coalescence

p=1/2N

p=1
HI b1 C1 extinction Cz
A B C B C
Locus 1 Locus 2

Figure 2B from Rasmussen and Kellis (2012)

Lateral Gene Transfer
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Figure 2c from Szollési et al. (2013)



a) evolutionary scenario

They used 423 single-copy genes
along complete phylogeny

in > 34 of 36 cyanobacteria

unrepresented They estimate:
. speciations
represented .
speciation .
2.56 losses/family
gene —
duplication

2.15 transfers/family

extinct or unsampled

~ 28% of transfers between
gene lineages

s
Y __gene
'y transfers
o
\

non-overlapping branches

genes observed in sampled species

Figure 3 from Szollési et al. (2013)

The main subject of this module: estimating a tree from
sequence data

Tree construction:

e strictly algorithmic approaches - use a “recipe” to construct a tree
e optimality based approaches - choose a way to “score” a trees and then
search for the tree that has the best score.

Expressing support for aspects of the tree:

e bootstrapping,

e testing competing trees against each other,
e posterior probabilities (in Bayesian approaches).



Optimality criteria

A rule for ranking trees (according to the data).
Each criterion produces a score.

Examples:

e Parsimony (Maximum Parsimony, MP)

Maximum Likelihood (ML)

Minimum Evolution (ME)

Least Squares (LS)

Why doesn’t simple clustering work?

A B C D A
Al O 0.2 05 04 B
B| 0.2 0. 046 04 D
C| 05 046 O 0.7 C
D04 04 07 O Tree from
clustering
0.38 C
0.02,
0.1 0.0SB
0.1
0.2 D

Tree with perfect fit



Why aren’t the easy, obvious methods for generating
trees good enough?

1. Simple clustering methods are sensitive to
differences in the rate of sequence evolution (and
this rate can be quite variable).

2. The “multiple hits” problem. When some sites
in your data matrix are affected by more than
1 mutation, then the phylogenetic signal can be
obscured. More on this later. ..

1 2 3 45 6 7 8 9
Speciesl] C G A C C A GG T
Species2 C G A CCAGGT
Species3 C G G T CC G G T
Species4 C G G C C T GG T



1 2 3 45 6 7 8 9
Speciesl] C G A CCAGGT
Species2 C G A CCAGGT
Species3 C G G T CC G G T
Species4 C G G C C T GG T
One of the 3 possible trees:
Species 1 Species 3
Species 2 Species 4
1 2 3 45 6 7 8 9
Speciesl] C G A C C A GG T
Species2 C G A CCAGGT
Species3 C G G T CC G G T
Species4 C G G C C T GG T
Same tree with states at character 6
One of the 3 possible trees: instead of species names
Species 1 Species 3 A C

Species 2 Species 4 A T



Unordered Parsimony
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Things to note about the last slide

e 2 steps was the minimum score attainable.

e Multiple ancestral character state reconstructions gave a
score of 2.

e Enumeration of all possible ancestral character states is not
the most efficient algorithm.



Each character (site) is assumed to be independent

To calculate the parsimony score for a tree we simply sum the
scores for every site.

1 2 3 4 5 6 7 8 9

Speciesl] C G A C C A G G T
Species2 C G A C C A G G T
Species3 C G G T C C G G T
Species4 C G G C C T G G T
Score 0O 01 1.0 2 0 0O
Species 1 Species 3

Tree 1 has a score of 4
Species 2 Species 4

Considering a different tree

We can repeat the scoring for each tree.

1 2 3 4 5 6 7 8 9

Speciesl] C G A C C A G G T
Species2 C G A C C A G G T
Species3 C G G T C C G G T
Species4 C G G C C T G G T
Score 0O 0 21 0 2 0 00O
Species 1 Species 2

Tree 2 has a score of 5

Species 3 Species 4



One more tree

Tree 3 has the same score as tree 2

1 2 3 4 5 6 7 8 9

Speciesl] C G A C C A G G T
Species2 C G A C C A G G T
Species3 C G G T C C G G T
Species4 C G G C C T G G T
Score 0O 021 0 2 0 0O
Species 1 Species 2

Tree 3 has a score of 5
Species 4 Species 3

Parsimony criterion prefers tree 1

Tree 1 required the fewest number of state changes (DNA
substitutions) to explain the data.

Some parsimony advocates equate the preference for the
fewest number of changes to the general scientific principle
of preferring the simplest explanation (Ockham’s Razor), but
this connection has not been made in a rigorous manner.



Parsimony terms

e homoplasy multiple acquisitions of the same character state

— parallelism, reversal, convergence

— recognized by a tree requiring more than the minimum
number of steps

— minimum number of steps is the number of observed states
minus 1

The parsimony criterion is equivalent to minimizing homoplasy.

Homoplasy is one form of the multiple hits problem. In pop-gen
terms, it is a violation of the infinite-alleles model.

In the example matrix at the beginning of these slides, only
character 3 is parsimony informative.

1 2 3 4 5 6 7 8 9
Speciesl C G A C C A G G T
Species2 C G A C C A G G T
Species3 C G G T C C G G T
Species4 C G G C C T G G T
Maxscore 0 0 2 1 0 2 0 0 O
Minscore 0 0 1 1 0 2 0 0 O



Assumptions about the evolutionary process can be
incorporated using different step costs

NI

0 Fitch Parsimony
“unordered”

Stepmatrices

Fitch Parsimony Stepmatrix

To
A C G T
A o 1 1 1
From C 1 0 1 1
G 1 1 0 1
T 1 1 1 0




Stepmatrices

Transversion-Transition 5:1 Stepmatrix
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Stepmatrix considerations

e Parsimony scores from different stepmatrices cannot be
meaningfully compared (31 under Fitch is not "better” than
45 under a transversion:transition stepmatrix)

e Parsimony cannot be used to infer the stepmatrix weights

Other Parsimony variants

e Dollo derived state can only arise once, but reversals can be
frequent (e.g. restriction enzyme sites).

e “weighted” - usually means that different characters are
weighted differently (slower, more reliable characters usually
given higher weights).

e implied weights Goloboff (1993)



Scoring trees under parsimony is fast

Scoring trees under parsimony is fast — Fitch algorithm

3 steps




Scoring trees under parsimony is fast

The “down-pass state sets” calculated in the Fitch algorithm
can be stored at an internal node.

This lets you treat those internal nodes as pseudo-tips:

e avoid rescoring the entire tree if you make a small change,
and

e break up the tree into smaller subtrees (Goloboff's sectorial
searching).

Qualitative description of parsimony

e Enables estimation of ancestral sequences.

e Even though parsimony always seeks to minimizes the
number of changes, it can perform well even when changes
are not rare.

e Does not “prefer” to put changes on one branch over another

e Hard to characterize statistically
— the set of conditions in which parsimony is guaranteed to

work well is very restrictive (low probability of change and
not too much branch length heterogeneity);
— Parsimony often performs well in simulation studies (even
when outside the zones in which it is guaranteed to work);
— Estimates of the tree can be extremely biased.



Long branch attraction

Felsenstein, J. 1978. Cases in which
parsimony or compatibility methods will be
positively misleading. Systematic Zoology
27: 401-410.

Long branch attraction

A G Felsenstein, J. 1978. Cases in which
parsimony or compatibility methods will be
positively misleading. Systematic Zoology
27: 401-410.

The probability of a parsimony informative
site due to inheritance is very low,
(roughly 0.0003).




Long branch attraction

A A Felsenstein, J. 1978. Cases in which
parsimony or compatibility methods will be
positively misleading. Systematic Zoology
27: 401-410.

The probability of a parsimony informative
site due to inheritance is very low,
(roughly 0.0003).

The probability of a misleading parsimony
informative site due to parallelism is much
higher (roughly 0.008).

Long branch attraction

Parsimony is almost guaranteed to get this tree wrong.
1 3

2 4 Inferred
True



Inconsistency

e Statistical Consistency (roughly speaking) is converging to
the true answer as the amount of data goes to oo.

e Parsimony based tree inference is not consistent for some
tree shapes. In fact it can be “positively misleading”:

— "“Felsenstein zone" tree

— Many clocklike trees with short internal branch lengths and
long terminal branches (Penny et al., 1989, Huelsenbeck
and Lander, 2003).

e Methods for assessing confidence (e.g. bootstrapping) will
indicate that you should be very confident in the wrong
answetr.

Parsimony terms

e synapomorphy — a shared derived (newly acquired) character
state. Evidence of monophletic groups.

O O e e e o



Parsimony terms

e parsimony informative — a character with parsimony score
variation across trees

— min score # max score
— must be variable.
— must have more than one shared state

Consistency Index (Cl)

e minimum number of changes divided by the number required
on the tree.

e Cl=1 if there is no homoplasy

e negatively correlated with the number of species sampled



Retention Index (RI)

~ MaxSteps — ObsSteps

RI =
MaxSteps — MinSteps

e defined to be 0 for parsimony uninformative characters
e RI=1 if the character fits perfectly

e RI=0 if the tree fits the character as poorly as possible

Transversion parsimony

e Transitions (A <+ G, C < T') occur more frequently than
transversions (purine <> pyrimidine)

e So, homoplasy involving transitions is much more common
than transversions (e.g. A - G — A)

e Transversion parsimony (also called RY-coding) ignores all
transitions



Transversion parsimony
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Long branch attraction tree again

The probability of a parsimony informative
site due to inheritance is very low,
(roughly 0.0003).

The probability of a misleading parsimony
informative site due to parallelism is much
higher (roughly 0.008).




If the data is generated such that:

Pr ~ 0.0003 and Pr ~ 0.008

QQaQ>=-
=~ Q Q-

then how can we hope to infer the tree ((1,2),3,4) 7

Note: ((1,2),3,4) is referred to as Newick or New
Hampshire notation for the tree.

You can read it by following the rules:

e start at a node,

e if the next symbol is ‘(" then add a child to the
current node and move to this child,

e if the next symbol is a label, then label the node
that you are at,

e if the next symbol is a comma, then move back to
the current node’s parent and add another child,
e if the next symbol is a *)’, then move back to the

current node'’s parent.



Distance-based approaches to inferring trees

e Convert the raw data (sequences) to a pairwise

distances

e Try to find a tree that explains these distances.

e Not simply clustering the most similar sequences.

1 2 3 45 6 7 8
Speciesl] C G A C C A G G
Species2 C G A C C A G G
Species3 C G G T C C G G
Species4 C G G C C A T G

Can be converted to a distance matrix:

444 4o
> > > > 5

Species 1 Species 2 Species 3 Species 4

Species 1 0 0 0.3
Species 2 0 0 0.3
Species 3 0.3 0.3

0.2 0.2

Species 4

0.3

0.2

0.2

0.3
0




Note that the distance matrix is symmetric.

Species 1 Species 2 Species 3 Species 4
Species 1 0 0 0.3 0.2
Species 2 0 0 0.3 0.2
Species 3 0.3 0.3 0 0.3
Species 4 0.2 0.2 0.3 0

. . SO we can just use the lower triangle.

Species 1 Species 2 Species 3

Species 2
Species 3
Species 4

0
0.3
0.2

0.3

0.2 0.3

Can we find a tree that would predict these observed
character divergences?




Species 1 Species 2 Species 3
Species 2 0
Species 3 0.3 0.3
Species 4 0.2 0.2 0.3
Can we find a tree that would predict these observed

character divergences?

2 4
parameters data
p12:a+b 1 2 3

piz=a+i+c 2 [ dys
pu=a+t+d

Py =b+i+c 3| diz ds
p3=0b+i+d 41 dyy dy dy
paa=c+d



If our pairwise distance measurements were error-free estimates
of the evolutionary distance between the sequences, then we
could always infer the tree from the distances.

The evolutionary distance is the number of mutations that have
occurred along the path that connects two tips.

We hope the distances that we measure can produce good
estimates of the evolutionary distance, but we know that they
cannot be perfect.

Intuition of sequence divergence vs evolutionary distance

/I'his can't be right!
1.0

p-dist

Evolutionary distance
0.0 Y » 00




Sequence divergence vs evolutionary distance

i

1.0
A .
the p-dist
“levels off”
p-dist
0.0
Evoluti dist
00 volutionary distance > o0

“Multiple hits” problem (also known as saturation)

e Levelling off of sequence divergence vs time plot is caused by
multiple substitutions affecting the same site in the DNA.

e At large distances the “raw” sequence divergence (also known
as the p-distance or Hamming distance) is a poor estimate
of the true evolutionary distance.

e Statistical models must be used to correct for unobservable
substitutions (much more on these models tomorrow!)

e Large p-distances respond more to model-based correction —
and there is a larger error associated with the correction.



15

10

VD, INULTIVET Ul UIHITITIIVLED

—_

EDEQBBBBQ5?Q

e S
E ‘ o ~ 4+ o o — — o o
‘:’ ‘ | o ! o - o o o o o o o o
D S ! — o o —+— o o o o o
o — o — o o o o o o

©o o o o —+— o o

o o o o

T T
1 5 10 15 20

Number of substitutions simulated onto a twenty-base sequence.

Distance corrections

e applied to distances before tree estimation,
e converts raw distances to an estimate of the evolutionary

distance
3 4c
d=—In(1—-—
in(1-3)
“raw” p-distances corrected distances
1 2 3 1 2 3
2 C12 2 d12
3| ci3 cCo 3 |diz das
4| cly Coa €34 4 | digs dosa d3g




“raw” p-distances corrected distances

1 2 3 1 2 3
2 10.0 2 0
3103 0.3 310.383 0.383
410.2 02 0.3 410.233 0.233 0.383

Least Squares Branch Lengths

Z_dzz

Sum OquuareSZE E (pJ - J)
or.
[ j 1]

e minimize discrepancy between path lengths and
observed distances

° afj Is used to “downweight” distance estimates

with high variance



Least Squares Branch Lengths

e in unweighted least-squares (Cavalli-Sforza &

Z_dZQ

Sum OquuareSZE E (pJ - J)
or.
[ j 1]

Edwards, 1967): k=0

e in the method Fitch-Margoliash (1967): k£ = 2 and

0ij = dij

Poor fit using arbitrary branch lengths

Species | d;; pij | (p—d)?
Hu-Ch | 0.09267 | 0.2 | 0.01152
Hu-Go | 0.10928 | 0.3 | 0.03637
Hu-Or | 0.17848 | 0.4 | 0.04907
Hu-Gi | 0.20420 | 0.4 | 0.03834
Ch-Go | 0.11440 | 0.3 | 0.03445
Ch-Or | 0.19413 | 0.4 | 0.04238
Ch-Gi | 0.21591 | 0.4 | 0.03389
Go-Or | 0.18836 | 0.3 | 0.01246
Go-Gi | 0.21592 | 0.3 | 0.00707
Or-Gi | 0.21466 | 0.2 | 0.00021

S.S. | 0.26577




Optimizing branch lengths yields the least-squares score

Species d;; Dij (» —d)? Go
Hu-Ch | 0.09267 | 0.09267 | 0.000000000
Hu-Go | 0.10928 | 0.10643 | 0.000008123 0.05790
Hu-Or | 0.17848 | 0.18026 | 0.000003168
Hu-Gi | 0.20420 | 0.20528 | 0.000001166 0.00761,/\0.03691

Ch-Go | 0.11440 | 0.11726 | 0.000008180 Hy -0.04002

0.094820r
Ch-Or | 0.19413 | 0.19109 | 0.000009242

Ch-Gi | 0.21591 | 0.21611 0.000000040 0.05175 0.11984
Go-Or | 0.18836 | 0.18963 | 0.000001613 |
Go-Gi | 0.21592 | 0.21465 | 0.000001613 Ch Gi

Or-Gi | 0.21466 | 0.21466 | 0.000000000
S.S. 0.000033144

Least squares as an optimality criterion

SS = 0.00034 SS = 0.0003314
(best tree)
Ch Go

0.04742 0.09482 Or Hu 0.04092 0.09482 Or

Hu

0.05175 0.11984 0.05175 0.11984

Go Gi Ch Gi



Minimum evolution optimality criterion

Sum of branch lengths Sum of branch lengths
=0.41152 =0.40975
(best tree)
Ch Go
0.05591 0.05790
-0.00701,/°\0.04178 0.00761/\0.03691
Hy -0.04742 0.00482 . 1y, 0.04002 0.00482
0.05175 0.11984 0.05175 0.11984

Go Gi Ch Gi

We still use least squares branch lengths when we use Minimum Evolutior

A C
¢ y | A B C
i B | das
C | dac dpc
J D |dap dap dcp
B D

If the tree above is correct then:

pap = a+b

pac = a+itc
pap = a+i+d
ppc = b+i+c
pep = b+i+d

pcp = c+d



¢ y | A B C
i B | dap
C | dac dpc
J D | dap dpp dcp
D

it = dactdpp—dap—dcp
2

Note that our estimate

A4 dac + dpp—dap — dcp
2
does not use all of our data. dpc and dyp are

ignored!

We could have used dgc + dap instead of dyc+dpp
(you can see this by going through the previous slides
after rotating the internal branch).

o dpc + dap—dap — dep
2



A better estimate than either 72 or +* would be the
average of both of them:

g dpc + dap + dac + dpp
2

—dap — dcp

This logic has been extend to trees of more than 4
taxa by Pauplin (2000) and Semple and Steel (2004).

Balanced minimum evolution

Desper and Gascuel (2002, 2004) refer to fitting the branch
lengths using the estimators of Pauplin (2000) and preferring
the tree with the smallest tree length “Balanced Minimum
Evolution.”

They that it is equivalent to a form of weighted least squares in
which distances are down-weighted by an exponential function
of the topological distances between the leaves.

Desper and Gascuel (2005) showed that neighbor-joining is star
decomposition (more on this later) under BME. See Gascuel
and Steel (2006)



FastME

Software by Desper and Gascuel (2004) which implements
searching under the balanced minimum evolution criterion.

It is extremely fast and is more accurate than neighbor-joining
(based on simulation studies).

Failure to correct distance sufficiently leads to poor
performance

“Under-correcting”  will underestimate long evolutionary
distances more than short distances




Failure to correct distance sufficiently leads to poor
performance

The result is the classic “long-branch attraction” phenomenon.

Distance methods: pros

e Fast — the new FastTree method Price et al. (2009) can
calculate a tree in less time than it takes to calculate a full
distance matrix!

e Can use models to correct for unobserved differences
e Works well for closely related sequences

e Works well for clock-like sequences



Distance methods: cons

e Do not use all of the information in sequences

e Do not reconstruct character histories, so they not enforce
all logical constraints
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