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Odds ratio justification for maximum likelihood
D the data
H1 Hypothesis 1
H2 Hypothesis 2
| the symbol for “given”

Prob (H1)

Prob (H2)
︸ ︷︷ ︸
Prior odds ratio

Prob (D | H1)

Prob (D | H2)
︸ ︷︷ ︸

Likelihood ratio

= Prob (H1 | D)

Prob (H2 | D)
︸ ︷︷ ︸
Posterior odds ratio
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If a space probe finds no Little Green Men on Mars
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The likelihood ratio term ultimately dominates
If we see one Little Green Man, the likelihood calculation does the right
thing:

1

4
×

2/3

0
=

∞

1

(put this way, this is OK but not mathematically kosher)

If we send n space probes and keep seeing none, the likelihood ratio
term is

(
1

3

)n

It dominates the calculation, overwhelming the prior.
Thus even if we don’t have a prior we can believe in, we may be interested
in knowing which hypothesis the likelihood ratio is recommending ...
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Likelihood in Simple Coin-Tossing
Tossing a coin n times, with probability p of heads, the probability of
outcome HHTHTTTTHTTH is

pp(1 − p)p(1 − p)(1 − p)(1 − p)(1 − p)p(1 − p)(1 − p)p

which is

L = p5(1 − p)6

Plotting L against p to find its maximum:
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Differentiating to find the maximum:
Differentiating the expression for L with respect to p and equating the
derivative to 0, the value of p that is at the peak is found (not surprisingly)
to be p = 5/11:

∂L

∂p
=

(
5

p
−

6

1 − p

)

p5(1 − p)6 = 0

5 − 11 p = 0

p̂ =
5

11
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A log-likelihood curve
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A Likelihood curve in one parameter
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Its maximum likelihood estimate
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maximum likelihood estimate (MLE)

A Likelihood curve in one parameter
and the maximum likelihood estimate
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The (approximate, asymptotic) confidence interval
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1/2 the value of

a chi−square
with 1 d.f.
significant at 95%

95% confidence interval

maximum likelihood estimate (MLE)

A Likelihood curve in one parameter
and the maximum likelihood estimate and
confidence interval derived from it
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Contours of a log-likelihood surface in two dimensions
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Log-likelihood-based confidence set for two variables
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height of this contour is
less than at the peak by an amount
equal to 1/2 the chi−square value with
two degrees of freedom which is significant at 95% level

shaded area is the joint confidence interval
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Confidence interval for one variable

length of branch 1

height of this contour is
less than at the peak by an amount
equal to 1/2 the chi−square value with
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one degree of freedom which is significant at 95% level
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Confidence interval for the other variable

length of branch 1

height of this contour is
less than at the peak by an amount
equal to 1/2 the chi−square value with
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one degree of freedom which is significant at 95% level
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Calculating the likelihood of a tree

If we have molecular sequences on a tree, the likelihood is the product
over sites of the data D[i] for each site (if those evolve independently):

L = Prob (D | T) =
sites
∏

i=1

Prob (D[i] | T)

With log-likelihoods, the product becomes a sum:

ln L = ln Prob (D | T) =
sites
∑

i=1

ln Prob (D[i] | T)
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Calculating the likelihood for site i on a tree

A C C C G

x
y

z

w

t1 t t
t t

t

t

2 3
4 5

6ti are
"branch lengths",

t7

8
(rate time) X 

Sum over all possible states (bases) at interior nodes:

L(i) =
∑

x

∑

y

∑

z

∑

w

Prob (w) Prob (x | w, t7)

× Prob (A | x, t1) Prob (C | x, t2) Prob (z | w, t8)

× Prob (C | z, t3) Prob (y | z, t6) Prob (C | y, t4) Prob (G | y, t5)
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Calculating the likelihood for site i on a tree

We use the conditional likelihoods: L
(i)
j (s)

These compute the probability of everything at site i at or above node j
on the tree, given that node j is in state s. Thus it assumes something
(s) that we don’t know in practice – so we compute these for all states s.

At the tips we can define these quantities: if the observed state is (say) C,
the vector of L’s is

(0, 1, 0, 0)

.
If we observe an ambiguity, say R (purine), they are

(1, 0, 1, 0), not (1/2, 0, 1/2, 0)
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The “pruning" algorithm:

vj vk

kj

l

L
(i)
!

(s) =

[

∑

sj

Prob (sj | s, vj) L
(i)
j (sj)

]

×

[
∑

sk

Prob (sk | s, vk) L
(i)
k (sk)

]

(Felsenstein, 1973; 1981).
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and at the bottom of the tree:

L
(i)
0 =

∑

s

πs L
(i)
0 (s)

(Felsenstein, 1973, 1981)
and having gotten the likelihoods for each site:

L =
sites
∏

i=1

L
(i)
0
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What does “tree space" (with branch lengths) look like?

t1
t2

t1
t2

an example:  three species with a clock

A B C

t 1
t 2

t 1

t 2

OK

not possible

trifurcation

etc.

when we consider all three possible 
topologies, the space looks like:
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For one tree topology
The space of trees varying all 2n − 3 branch lengths, each a nonegative
number, defines an “orthant" (open corner) of a (2n − 3)-dimensional real
space:
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Through the looking-glass
Shrinking one of the n − 1 interior branches to 0, we arrive at a
trifurcation:
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Here, as we pass “through the looking glass" we are also touch the space
for two other tree topologies, and we could enter either.
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The graph of all trees of 5 species
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A data example: mitochondrial D-loop sequences
Bovine CCAAACCTGT CCCCACCATC TAACACCAAC CCACATATAC AAGCTAAACC AAAAATACCA
Mouse CCAAAAAAAC ATCCAAACAC CAACCCCAGC CCTTACGCAA TAGCCATACA AAGAATATTA
Gibbon CTATACCCAC CCAACTCGAC CTACACCAAT CCCCACATAG CACACAGACC AACAACCTCC
Orang CCCCACCCGT CTACACCAGC CAACACCAAC CCCCACCTAC TATACCAACC AATAACCTCT
Gorilla CCCCATTTAT CCATAAAAAC CAACACCAAC CCCCATCTAA CACACAAACT AATGACCCCC
Chimp CCCCATCCAC CCATACAAAC CAACATTACC CTCCATCCAA TATACAAACT AACAACCTCC
Human CCCCACTCAC CCATACAAAC CAACACCACT CTCCACCTAA TATACAAATT AATAACCTCC

TACTACTAAA AACTCAAATT AACTCTTTAA TCTTTATACA ACATTCCACC AACCTATCCA
TACAACCATA AATAAGACTA ATCTATTAAA ATAACCCATT ACGATACAAA ATCCCTTTCG
CACCTTCCAT ACCAAGCCCC GACTTTACCG CCAACGCACC TCATCAAAAC ATACCTACAA
CAACCCCTAA ACCAAACACT ATCCCCAAAA CCAACACACT CTACCAAAAT ACACCCCCAA
CACCCTCAAA GCCAAACACC AACCCTATAA TCAATACGCC TTATCAAAAC ACACCCCCAA
CACTCTTCAG ACCGAACACC AATCTCACAA CCAACACGCC CCGTCAAAAC ACCCCTTCAG
CACCTTCAGA ACTGAACGCC AATCTCATAA CCAACACACC CCATCAAAGC ACCCCTCCAA

CACAAAAAAA CTCATATTTA TCTAAATACG AACTTCACAC AACCTTAACA CATAAACATA
TCTAGATACA AACCACAACA CACAATTAAT ACACACCACA ATTACAATAC TAAACTCCCA
CACAAACAAA TGCCCCCCCA CCCTCCTTCT TCAAGCCCAC TAGACCATCC TACCTTCCTA
TTCACATCCG CACACCCCCA CCCCCCCTGC CCACGTCCAT CCCATCACCC TCTCCTCCCA
CATAAACCCA CGCACCCCCA CCCCTTCCGC CCATGCTCAC CACATCATCT CTCCCCTTCA
CACAAATTCA TACACCCCTA CCTTTCCTAC CCACGTTCAC CACATCATCC CCCCCTCTCA
CACAAACCCG CACACCTCCA CCCCCCTCGT CTACGCTTAC CACGTCATCC CTCCCTCTCA

CCCCAGCCCA ACACCCTTCC ACAAATCCTT AATATACGCA CCATAAATAA CA
TCCCACCAAA TCACCCTCCA TCAAATCCAC AAATTACACA ACCATTAACC CA
GCACGCCAAG CTCTCTACCA TCAAACGCAC AACTTACACA TACAGAACCA CA
ACACCCTAAG CCACCTTCCT CAAAATCCAA AACCCACACA ACCGAAACAA CA
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which gives the ML tree

Maximum likelihood tree
for the Hasegawa
232-site mitochondrial
D-loop data set, with
Ts/Tn set to 2, analyzed
with maximum likelihood
(DNAML)

Mouse

Human

Chimp
Gorilla

Orang

Gibbon

Bovine

0.792 0.902

0.486

0.3360.1210.049

0.3040.153
0.075

0.172

0.106

ln  L   =   −1405.6083
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Models with amino acids

Dayhoff PAM model
Jones−Taylor−Thornton model
specific models for secondary−structure contexts or membrane proteins
Models adapted from Henikoff BLOSUM scoring

But ...  how to take DNA sequence into account?  Constraints of code?
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Codon models
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Goldman & Yang, 1994; Muse & Gaut, 1994)

1 ω 0
Probabilities of change vary depending on whether amino acid is changing, and to what
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Covarion models?

A G T A A G G T T T A A G T C A

A G A A G G T T T A A G T C A

A G A A G T T T A A G T C A

A G A A G G T T T A A G T C A

A G A A G T T T A A G T C A

A G A A G G T T A A G T C A

(Fitch and Markowitz, 1970)

C
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A

T

T

T

Which sites are available

for substitutions changes

as one moves along the tree
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How to calculate likelihood with rate variation

Easy! Since branch lengths always come into transition probability
formulas as r × t , can just multiply lengths of branches by the
appropriate factor to calculate the likelihood for a site.

(Branch lengths are usually scaled by assuming a rate of 1.)
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Rate variation among sites
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Hidden Markov Model of rate variation among sites
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Hidden Markov Models sum up over all paths
The Hidden Markov Chain method sums up likelihoods over

all possible paths through the states:

Prob (Data | tree)   =   
paths

Prob(Data| tree, path)

one path

another path

Σ  Prob(path)

This is done using a recursive algorithm known as the Forwards
Algorithm, well-known in the HMM literature.
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The rate combination contributing the most:

We can leave behind pointers that allow us to backtrack

This can be done by a dynamic programming algorithm called the Viterbi
Algorithm, well-known in the HMM literature.

(Of course, this one might account for only 0.001 of the likelihood)
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Forwards-Backwards algorithm (marginal probabilities)

The Forwards−Backwards algorithm

at a given site to the overall likelihood
can calculate the contribution of one rate

(a little different from the Viterbi calculation)
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The Gamma distribution, used for rates

α = 1/4

CV = 2

α = 1

CV = 1

α = 4

CV = 1/2

0.5 1.5 2.5
rate

1 2 30
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A numerical example. Cyochrome B
We analyze 31 cytochrome B sequences, aligned by Naoko Takezaki,
using the Proml protein maximum likelihood program. Assume a Hidden
Markov Model with 3 states, rates:

category rate probability
1 0.0 0.2
2 1.0 0.4
3 3.0 0.4

and expected block length 3.

We get a reasonable, but not perfect, tree with the best rate combination
inferred to be
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The cytochrome B tree from the above run
 seaurchin2

 seaurchin1
 lamprey trout

 loach
 carp xenopus

 chicken
 opossum
 wallaroo platypus

 rat
 mouse cat

 hseal
 gseal bovine

 whalebp
 whalebm

 dhorse
 horse
 rhinocer

 gibbon sorang
 borang

 gorilla2 gorilla1
 cchimp
 pchimp
 african
 caucasian

wrong

dubious

(It’s not perfect). Likelihoods, Bootstraps and Testing Trees – p.36/59



Rates inferred from Cytochrome B
1333333311 3222322313 3321113222 2133111111 1331133123 1122111112

african M-----TPMRK INPLMKLINH SFIDLPTPSN ISAWWNFGSL LGACLILQIT TGLFLAMHYS
caucasian .......... .........R .......... .......... ..T....... ..........
cchimp .......T.. .......... .......... .......... .......... ..........
pchimp .......T.. .......... .......... ..T....... .......... ..........
gorilla1 .......... T...A..... .......... ..T....... .......... ..........
gorilla2 .......... T...A..... .......... ..T....... .......... ..........
borang .......... T......... .L........ .......... ......I.TI ..........
sorang ......ST.. T......... .L........ .......... ......I... ..........
gibbon .......L.. T......... .L....A... ..M....... .........I .........T
bovine ......NI.. SH....IV.N A.....A... ..S....... ..I......L .........T
whalebm ......NI.. TH....I..D A......... ..S....... ..L...V..L .........T
whalebp ......NI.. TH....IV.D A.V....... ..S....... ..L...M..L .........T
dhorse ......NI.. SH..I.I... ......A... ..S....... ..I......L .........T
horse ......NI.. SH..I.I... .......... ..S....... ..I......L .........T
rhinocer ......NI.. SH..V.I... .......... ..S....... ..I......L .........T
cat ......NI.. SH..I.I... ......A... .......... ..V..T...L .........T
gseal ......NI.. TH....I..N .......... .......... ..I......L .........T
hseal ......NI.. TH....I..N .......... .......... ..I......L .........T
mouse ......N... TH..F.I... ......A... ..S....... ..V..MV..I .........T
rat ......NI.. SH..F.I... ......A... ..S....... ..V..MV..L .........T
platypus .....NNL.. TH..I.IV.. .......... ..S....... ..L...I..L .........T
wallaroo ......NL.. SH..I.IV.. ......A... .......... ......I..L .........T
opossum ......NI.. TH....I..D .......... .......... ..V...I..L .........T
chicken ....APNI.. SH..L.M..N .L....A... .......... .AV..MT..L ...L.....T
xenopus ....APNI.. SH..I.I..N .......... ..SL...... ..V...A..I .........T
carp ....A-SL.. TH..I.IA.D ALV....... .......... ..L...T..L .........T
loach ....A-SL.. TH..I.IA.D ALV...A... ..V....... ..L...T..L .........T
trout ....A-NL.. TH..L.IA.D ALV...A... ..V....... ..L..AT..L .........T
lamprey .SHQPSII.. TH..LS.G.S MLV...S.A. .......... .SL......I ...I.....T
seaurchin1 -...LG.L.. EH.IFRIL.S T.V...L... L.I....... ..L...T..L .........T
seaurchin2 -...AG.L.. EH.IFRIL.S T.V...L... L.M....... ..L...I.LI ..I......TLikelihoods, Bootstraps and Testing Trees – p.37/59

Rates inferred from Cytochrome B
2223311112 2222222222 2222232112 2222222223 1222221112 3333111122

african PDASTAFSSI AHITRDVNYG WIIRYLHANG ASMFFICLFL HIGRGLYYGS FLYSETWNIG
caucasian .......... .......... .......... .......... .......... ..........
cchimp .......... .......... .......... .......... .......... ...L......
pchimp .......... .......... .......... ...L...... .V........ ...L......
gorilla1 .......... .......... .T........ .......... .......... ..HQ......
gorilla2 .......... .......... .T........ .......... .......... ..HQ......
borang ...T...... .......... .M..H..... ...L...... .......... .THL......
sorang .......... .......... .M..H..... .......... .......... .THL......
gibbon .........V .......... .......... .......... .......... ...L......
bovine S.TT.....V T..C...... .....M.... ........YM .V........ YTFL......
whalebm ..TM.....V T..C...... .V........ ........YA .M........ HAFR......
whalebp ..TT.....V T..C...... .......... ........YA .M........ YAFR......
dhorse S.TT.....V T..C...... .......... .........I .V........ YTFL......
horse S.TT.....V T..C...... .......... .........I .V........ YTFL......
rhinocer ..TT.....V T..C...... .M........ .........I .V........ YTFL......
cat S.TM.....V T..C...... .......... ........YM .V...M.... YTF.......
gseal S.TT.....V T..C...... .......... ........YM .V........ YTFT......
hseal S.TT.....V T..C...... .......... ........YM .V........ YTFT......
mouse S.TM.....V T..C...... .L...M.... .......... .V........ YTFM......
rat S.TM.....V T..C...... .L....Q... .......... .V........ YTFL......
platypus S.T......V ...C...... .L...M.... ..L..M.I.. .......... YTQT......
wallaroo S.TL.....V ...C...... .L..N..... .....M.... .V...I.... Y..K......
opossum S.TL.....V ...C...... .L..NI.... .....M.... .V...I.... Y..K......
chicken A.T.L....V ..TC.N.Q.. .L..N..... ..F....I.. .......... Y..K....T.
xenopus A.T.M....V ...CF..... LL..N..... L.F....IY. .......... ...K......
carp S.I......V T..C...... .L..NV.... ..F....IYM ..A....... Y..K......
loach S.I......V ...C...... .L..NI.... ..F.....Y. ..A....... Y..K......
trout S.I......V C..C...S.. .L..NI.... ..F....IYM ..A....... Y..K......
lamprey ANTEL....V M..C....N. .LM.N..... .......IYA .....I.... Y..K....V.
seaurchin1 A.I.L....A S..C...... .LL.NV.... ..L....MYC .........G SNKI....V.
seaurchin2 A.INL....V S..C...... .LL.NV...C ..L....MYC .........L TNKI....V.Likelihoods, Bootstraps and Testing Trees – p.38/59



Likelihood curve and its confidence interval
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(This is for the 14-species primates data available for download).
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Constraints on a tree for a clock

A B C D E

v2v1

v3

v4 v5

v6

v7

v8

Constraints for a clock

v2v1 =

v4 v5=

v3 v7 v4 v8=+ +

v1 v6 v3=+

Does not constrain the
branch length on the
unrooted tree
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Likelihood-ratio test of molecular clock

Mouse

Human

Chimp

Gorilla

Orang

Gibbon

Bovine

log−likelihood parameters

Without clock

With clock

Difference

11

6

5

−1407.085

df = 5

−1405.608

1.477 χ 2
= 2.954

(non−significant)

(This is for this 7-species subset of the primates data).
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Likelihood surface for three clocklike trees
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(These are “profile likelihoods" as they show the largest likelihood for that
value of x , maximizing over the other branch length in the tree.)
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Two trees to be tested using KHT test
Mouse

Bovine

Gibbon

Orang

Gorilla

Chimp

Human

Mouse

Bovine

Gibbon

Orang

Gorilla

Chimp

Human

Tree I

Tree II
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Table of differences in log-likelihood

site
1 2 3 4 5 6 ln LTree

I

II

231 232

−1405.61

−1408.80 ...

Diff  ...         +3.19

−2.971 −4.483 −5.673 −5.883 −2.691  ...−8.003 −2.971 −2.691

−2.983 −4.494 −5.685 −5.898 −2.700 −7.572 −2.987 −2.705

+0.012 +0.013 +0.010 −0.431+0.015+0.111 +0.012 +0.010
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Histogram of those differences

−0.50 0.0 0.50 1.0 1.5 2.0

Difference in log likelihood at site

Do sign test, or t-test, or similar nonparametric tests.
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Bootstrap sampling (with mixtures of normals)

Bootstrap replicates

θ(unknown) true value of  

(unknown) true distributionempirical distribution of sample

estimate of  θ

Distribution of estimates of parameters
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Bootstrap sampling
To infer the error in a quantity, θ, estimated from a sample of points
x1, x2, . . . , xn we can

Do the following R times (R = 1000 or so)
Draw a “bootstrap sample" by sampling n times with replacement
from the sample. Call these x∗1 , x

∗

2 , . . . , x
∗

n. Note that some of the
original points are represented more than once in the bootstrap
sample, some once, some not at all.

Estimate θ from each of the bootstrap samples, call these θ̂∗
k

(k = 1, 2, . . . , R)

When all R bootstrap samples have been done, the distribution of θ̂∗i
estimates the distribution one would get if one were able to draw
repeated samples of n data points from the unknown true
distribution.
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Bootstrap sampling of phylogenies

Original
Data

sequences

sites

Bootstrap
sample
#1

Bootstrap
sample

#2

sample same number
of sites, with replacement

sample same number
of sites, with replacement

sequences

sequences

sites

sites

(and so on)

Estimate of the tree

Bootstrap estimate of
the tree, #1

A C B D

A C B D

Bootstrap estimate of
the tree, #2

A C B D
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Analyzing bootstraps with phylogenies

The sites are assumed to have evolved independently given the tree.
They are the entities that are sampled (the xi). The trees play the role of
the parameter. One ends up with a cloud of R sampled trees.

To summarize this cloud, we ask, for each branch in the tree, how
frequently it appears among the cloud of trees. We make a tree that
summarizes this for all the most frequently occurring branches. This is the
majority rule consensus tree of the bootstrap estimates of the tree.
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Partitions from branches in an (unrooted) tree

AE | BCDF

ACE | BDF

ACEF | BD

E

A
C F

B

D

E

A
C F

B

D

E

A
C F

B

D

E

A
C F

B

D

A | CEFBD

and so on for all the other external (tip) branches
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The majority-rule consensus tree

Trees:

How many times each partition of species is found:

AE | BCDF 3
ACE | BDF 3
ACEF | BD 1
AC | BDEF 1
AEF | BCD 1
ADEF | BC 2
ABDF | EC 1
ABCE | DF 3

A

E
C B

D

F

60

60

60

B
D
F

E
C
A

B
D
F

E

C
A

B
D
F

E
C
A

B

D
F

E

C

A

B

DF

E
A C

Majority−rule consensus tree of the unrooted trees:
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Bootstrap sampling of a phylogeny
Bovine

Mouse

Squir Monk

Chimp

Human

Gorilla

Orang

Gibbon

Rhesus Mac

Jpn Macaq

Crab−E.Mac

BarbMacaq

Tarsier

Lemur

80

72

74

99
99

100

77

42

35

49

84

In this example, parsimony was used to infer the tree.
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Potential problems with the bootstrap
Sites may not evolve independently
Sites may not come from a common distribution (but you can
consider them to be sampled from a mixture of possible
distributions)
If do not know which branch is of interest at the outset, a
“multiple-tests" problem means that the most extreme P values are
overstated
P values are biased (too conservative)
Bootstrapping does not correct biases in phylogeny methods
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Delete-half jackknife P values
Bovine
Mouse

Squir Monk

Chimp

Human

Gorilla

Orang

Gibbon

Rhesus Mac

Jpn Macaq

Crab−E.Mac

BarbMacaq

Tarsier

Lemur

80

99

100

84

98

69

72

80

50

59

32

In this example, parsimony was used to infer the tree.
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A diagram of the parametric bootstrap

original
data

estimate
of tree

data
set #1

data

data

data

set #2

set #3

set #100

computer
simulation

estimation
of tree

T1

T

T

2

T3

100

Likelihoods, Bootstraps and Testing Trees – p.55/59

References
Likelihood
Edwards, A. W. F. and L. L. Cavalli-Sforza. 1964. Reconstruction of
evolutionary trees. pp. 67-76 in Phenetic and Phylogenetic Classification, ed.
V. H. Heywood and J. McNeill. Systematics Association Publication No. 6.
Systematics Association, London. [The founding paper for parsimony and
likelihood for phylogenies, using gene frequencies]

Jukes, T. H. and C. Cantor. 1969. Evolution of protein molecules. pp.
21-132 in Mammalian Protein Metabolism, ed. M. N. Munro. Academic
Press, New York. [The Jukes-Cantor model, in one formula and a couple of
sentences]

Neyman, J. 1971. Molecular studies of evolution: a source of novel
statistical problems. In Statistical Decision Theory and Related Topics, ed. S.
S. Gupta and J. Yackel, pp. 1-27. New York: Academic Press. [First paper
on likelihood for molecular sequences. Neyman was a famous statistician.]

Felsenstein, J. 1973. Maximum-likelihood and minimum-steps methods for
estimating evolutionary trees from data on discrete characters. Systematic
Zoology 22: 240-249. [The pruning algorithm, parsimony is not same as
likelihood]

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum
likelihood approach. Journal of Molecular Evolution 17: 368-376. [Making
likelihood useable for molecular sequences] Likelihoods, Bootstraps and Testing Trees – p.56/59



(more references)
Yang, Z. 1994. Maximum-likelihood estimation of phylogeny from DNA
sequences when substitution rates differ over sites. Molecular Biology and
Evolution 10: 1396-1401. [Use of gamma distribution of rate variation in
ML phylogenies]

Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA
sequences with variable rates over sites: approximate methods. Journal of
Molecular Evolution 39: 306-314. [Approximating gamma distribution in
ML phylogenies by an HMM]

Yang, Z. 1995. A space-time process model for the evolution of DNA
sequences. Genetics 139: 993-1005. [Allowing for autocorrelated rates
along the molecule using an HMM for ML phylogenies]

Felsenstein, J. and G. A. Churchill. 1996. A Hidden Markov Model
approach to variation among sites in rate of evolution Molecular Biology
and Evolution 13: 93-104. [HMM approach to evolutionary rate variation]

Thorne, J. L., N. Goldman, and D. T. Jones. 1996. Combining protein
evolution and secondary structure. Molecular Biology and Evolution 13
666-673. [HMM for secondary structure of proteins, with phylogenies]
Bootstraps etc.
Efron, B. 1979. Bootstrap methods: another look at the jackknife. Annals of
Statistics 7: 1-26. [The original bootstrap paper]

Likelihoods, Bootstraps and Testing Trees – p.57/59

(more references)
Margush, T. and F. R. McMorris. 1981. Consensus n-trees. Bulletin of
Mathematical Biology 43: 239-244i. [Majority-rule consensus trees]

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using
the bootstrap. Evolution 39: 783-791. [The bootstrap first applied to
phylogenies]

Zharkikh, A., and W.-H. Li. 1992. Statistical properties of bootstrap
estimation of phylogenetic variability from nucleotide sequences. I. Four
taxa with a molecular clock. Molecular Biology and Evolution 9: 1119-1147.
[Discovery and explanation of bias in P values]

Künsch, H. R. 1989. The jackknife and the bootstrap for general stationary
observations. Annals of Statistics 17: 1217-1241. [The block-bootstrap]

Wu, C. F. J. 1986. Jackknife, bootstrap and other resampling plans in
regression analysis. Annals of Statistics 14: 1261-1295. [The delete-half
jackknife]

Efron, B. 1985. Bootstrap confidence intervals for a class of parametric
problems. Biometrika 72: 45-58. [The parametric bootstrap]

Templeton, A. R. 1983. Phylogenetic inference from restriction
endonuclease cleavage site maps with particular reference to the
evolution of humans and the apes. Evolution 37: 221-224. [The first paper
on the KHT test]

Likelihoods, Bootstraps and Testing Trees – p.58/59



(more references)
Goldman, N. 1993. Statistical tests of models of DNA substitution. Journal
of Molecular Evolution 36: 182-98. [Parametric bootstrapping for testing
models]

Shimodaira, H. and M. Hasegawa. 1999. Multiple comparisons of
log-likelihoods with applications to phylogenetic inference. Molecular
Biology and Evolution 16: 1114-1116. [Correction of KHT test for multiple
hypothesis]

Prager, E. M. and A. C. Wilson. 1988. Ancient origin of lactalbumin from
lysozyme: analysis of DNA and amino acid sequences. Journal of
Molecular Evolution 27: 326-335. [winning-sites test]

Hasegawa, M. and H. Kishino. 1994. Accuracies of the simple methods for
estimating the bootstrap probability of a maximum-likelihood tree.
Molecular Biology and Evolution 11: 142-145. [RELL probabilities]
General reading
Felsenstein, J. 2004. Inferring Phylogenies. Sinauer Associates,
Sunderland, Massachusetts. [Book you and all your friends must rush out
and buy]

Yang, Z. 2006. Computational Molecular Evolution. Oxford University Press,
Oxford. [Well-thought-out book on molecular phylogenies]

Semple, C. and M. Steel. 2003. Phylogenetics. Oxford University Press,
Oxford. [Good for a mathematical audience] Likelihoods, Bootstraps and Testing Trees – p.59/59


