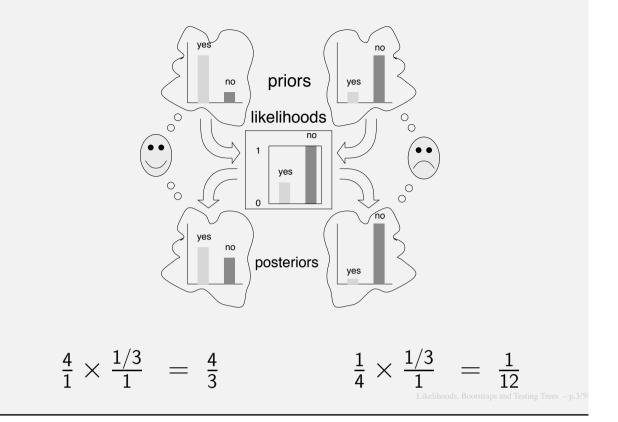

Likelihoods, Bootstraps and Testing Trees


Joe Felsenstein

Depts. of Genome Sciences and of Biology, University of Washington

Likelihoods, Bootstraps and Testing Trees – p.1/5

If a space probe finds no Little Green Men on Mars

The likelihood ratio term ultimately dominates

If we see one Little Green Man, the likelihood calculation does the right thing:

$$\frac{1}{4} \ \times \ \frac{2/3}{0} \ = \ \frac{\infty}{1}$$

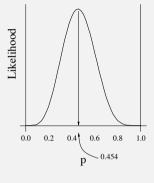
(put this way, this is OK but not mathematically kosher)

If we send $\ n \$ space probes and keep seeing none, the likelihood ratio term is

$\left(\frac{1}{3}\right)^n$

It dominates the calculation, overwhelming the prior.

Thus even if we don't have a prior we can believe in, we may be interested in knowing which hypothesis the likelihood ratio is recommending ...


Likelihood in Simple Coin-Tossing

Tossing a coin $\,n\,$ times, with probability $\,p\,$ of heads, the probability of outcome HHTHTTTHTTH is

which is

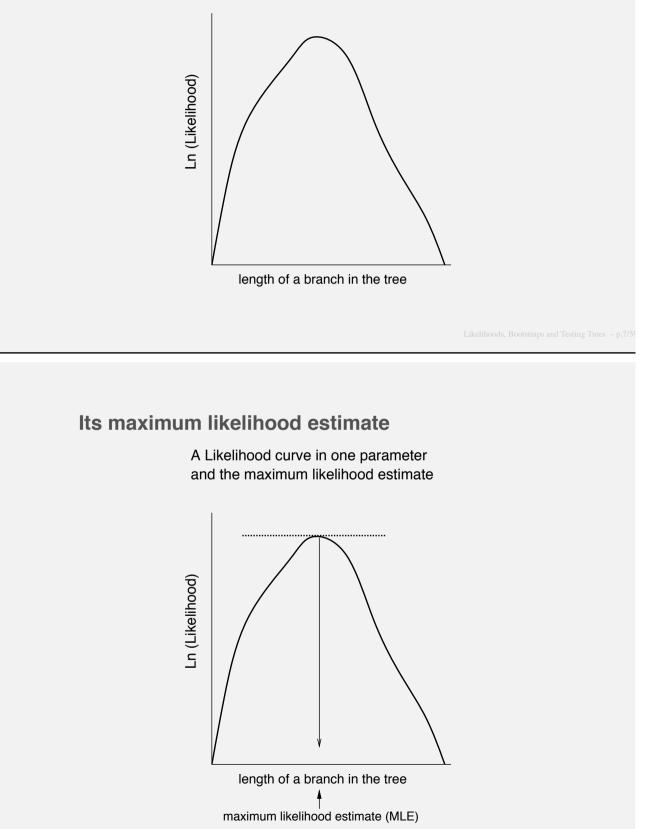
 $\mathsf{L}=\mathsf{p}^5(1-\mathsf{p})^6$

Plotting L against p to find its maximum:

Likelihoods, Bootstraps and Testing Trees - p.5/5

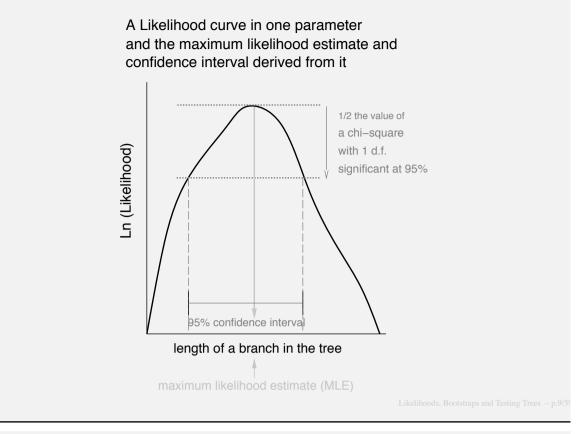
Differentiating to find the maximum:

Differentiating the expression for L with respect to p and equating the derivative to 0, the value of p that is at the peak is found (not surprisingly) to be p = 5/11:

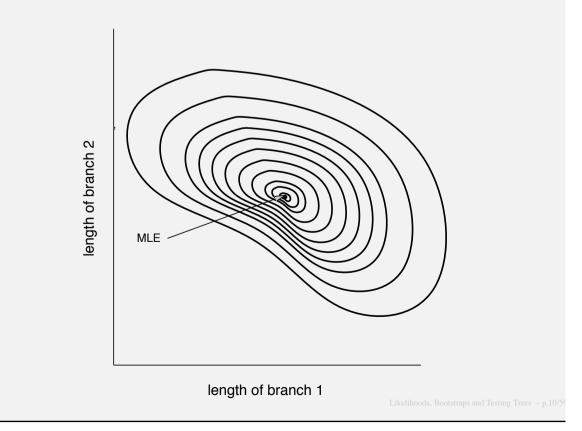

$$\frac{\partial L}{\partial p} \;=\; \left(\frac{5}{p}-\frac{6}{1-p}\right)p^5(1-p)^6 \;=\; 0$$

$$5 - 11 p = 0$$

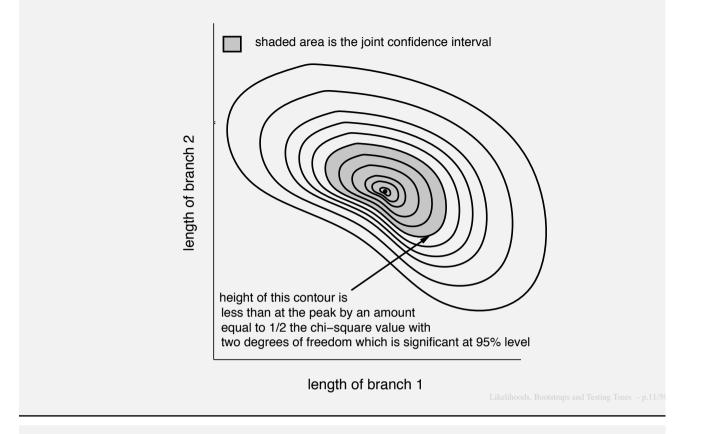
$$\hat{p} = \frac{5}{11}$$

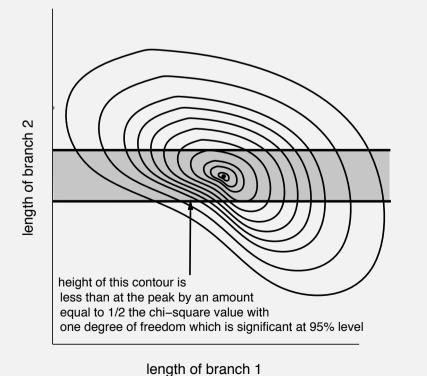

A log-likelihood curve

A Likelihood curve in one parameter

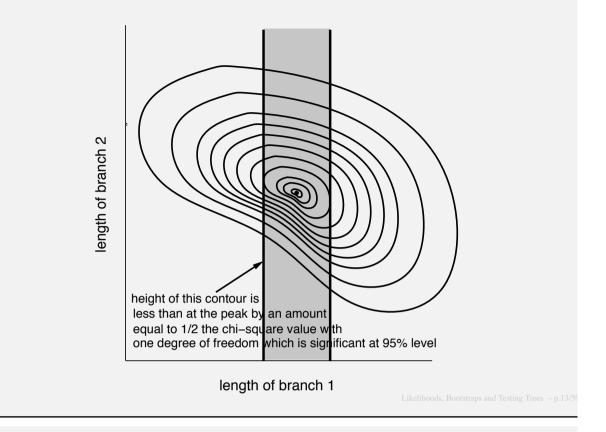


Likelihoods, Bootstraps and Testing Trees - p.8/5


The (approximate, asymptotic) confidence interval


Contours of a log-likelihood surface in two dimensions

Log-likelihood-based confidence set for two variables

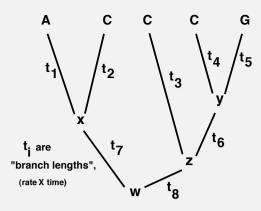


Confidence interval for one variable

Likelihoods, Bootstraps and Testing Trees – p.12/5

Confidence interval for the other variable

Calculating the likelihood of a tree


If we have molecular sequences on a tree, the likelihood is the product over sites of the data $D^{[i]}$ for each site (if those evolve independently):

$$\mathsf{L} \ = \ \operatorname{Prob}\left(\mathsf{D} \mid \mathsf{T}\right) \ = \ \prod_{i=1}^{\text{sites}} \ \operatorname{Prob}\left(\mathsf{D}^{[i]} \mid \mathsf{T}\right)$$

With log-likelihoods, the product becomes a sum:

$$\ln L \hspace{.1 in} = \hspace{.1 in} \ln \hspace{.1 in} \operatorname{Prob} \left(\mathsf{D} \mid \mathsf{T} \right) \hspace{.1 in} = \hspace{.1 in} \sum_{i=1}^{sites} \hspace{.1 in} \ln \hspace{.1 in} \operatorname{Prob} \left(\mathsf{D}^{[i]} \mid \mathsf{T} \right)$$

Calculating the likelihood for site *i* on a tree

Sum over all possible states (bases) at interior nodes:

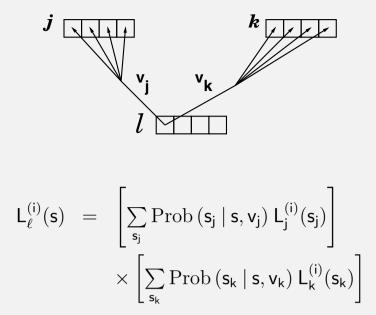
$$\begin{array}{lll} \mathsf{L}^{(i)} & = & \sum\limits_{\mathsf{x}} \sum\limits_{\mathsf{y}} \sum\limits_{\mathsf{z}} \sum\limits_{\mathsf{w}} \; \operatorname{Prob}\left(\mathsf{w}\right) \; \operatorname{Prob}\left(\mathsf{x} \mid \mathsf{w}, \mathsf{t}_{7}\right) \\ & & \times \operatorname{Prob}\left(\mathsf{A} \mid \mathsf{x}, \mathsf{t}_{1}\right) \operatorname{Prob}\left(\mathsf{C} \mid \mathsf{x}, \mathsf{t}_{2}\right) \operatorname{Prob}\left(\mathsf{z} \mid \mathsf{w}, \mathsf{t}_{8}\right) \\ & & \times \operatorname{Prob}\left(\mathsf{C} \mid \mathsf{z}, \mathsf{t}_{3}\right) \operatorname{Prob}\left(\mathsf{y} \mid \mathsf{z}, \mathsf{t}_{6}\right) \operatorname{Prob}\left(\mathsf{C} \mid \mathsf{y}, \mathsf{t}_{4}\right) \operatorname{Prob}\left(\mathsf{G} \mid \mathsf{y}, \mathsf{t}_{5}\right) \end{array}$$

Likelihoods, Bootstraps and Testing Trees - p.15/5

Calculating the likelihood for site i on a tree

We use the conditional likelihoods: $L_i^{(i)}(s)$

These compute the probability of everything at site i at or above node j on the tree, given that node j is in state s. Thus it assumes something (s) that we don't know in practice – so we compute these for all states s.


At the tips we can define these quantities: if the observed state is (say) c, the vector of L's is

(0, 1, 0, 0)

If we observe an ambiguity, say R (purine), they are

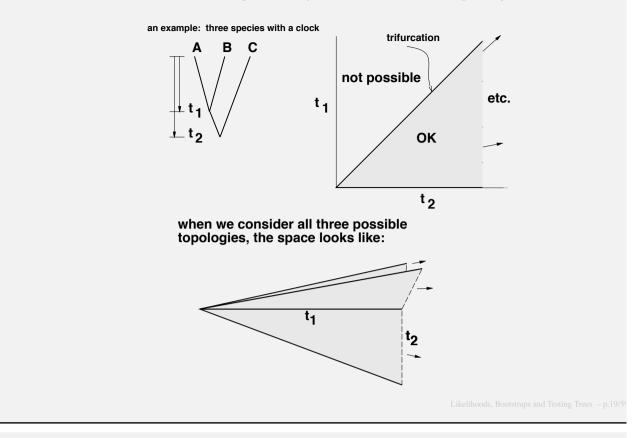
(1, 0, 1, 0), not (1/2, 0, 1/2, 0)

The "pruning" algorithm:

(Felsenstein, 1973; 1981).

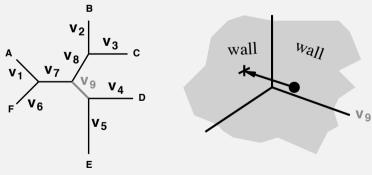
Likelihoods, Bootstraps and Testing Trees – p.17/5

and at the bottom of the tree:

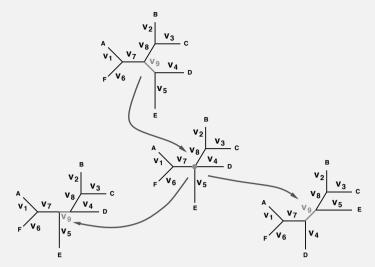

$$L_0^{(i)} = \sum_{s} \pi_s \ L_0^{(i)}(s)$$

(Felsenstein, 1973, 1981)

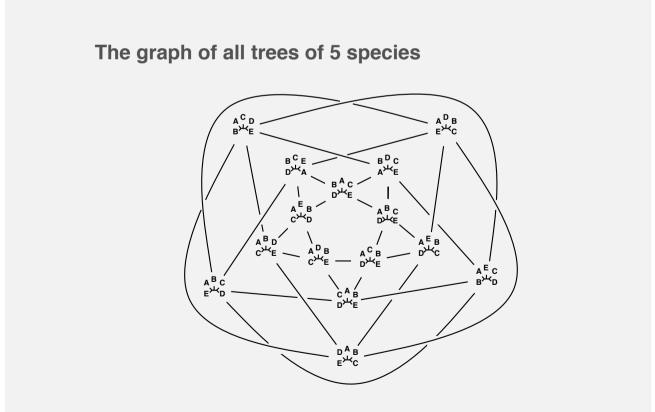
and having gotten the likelihoods for each site:


$$L \; = \; \prod_{i=1}^{\rm sites} \; L_0^{(i)} \;$$

What does "tree space" (with branch lengths) look like?


For one tree topology

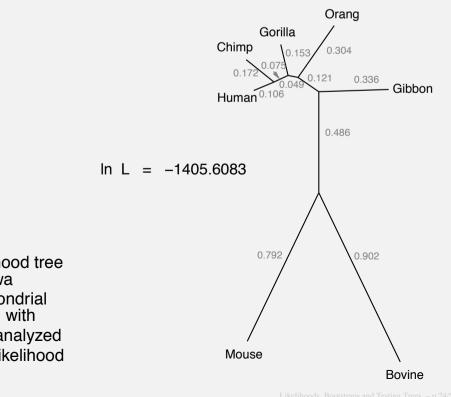
The space of trees varying all 2n-3 branch lengths, each a nonegative number, defines an "orthant" (open corner) of a (2n-3)-dimensional real space:


Through the looking-glass

Shrinking one of the n-1 interior branches to 0, we arrive at a trifurcation:

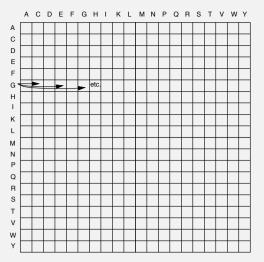
Here, as we pass "through the looking glass" we are also touch the space for two other tree topologies, and we could enter either.

Likelihoods, Bootstraps and Testing Trees - p.21/59



The Schoenberg graph (all 15 trees of size 5 connected by NNI's)

A data example: mitochondrial D-loop sequences


Bovine	CCAAACCTGT	CCCCACCATC	TAACACCAAC	CCACATATAC	AAGCTAAACC	AAAAATACCA
Mouse	CCAAAAAAAC	ATCCAAACAC	CAACCCCAGC	CCTTACGCAA	TAGCCATACA	AAGAATATTA
Gibbon	CTATACCCAC	CCAACTCGAC	CTACACCAAT	CCCCACATAG	CACACAGACC	AACAACCTCC
Orang	CCCCACCCGT	CTACACCAGC	CAACACCAAC	CCCCACCTAC	TATACCAACC	AATAACCTCT
Gorilla	CCCCATTTAT	CCATAAAAAC	CAACACCAAC	CCCCATCTAA	CACACAAACT	AATGACCCCC
Chimp	CCCCATCCAC	CCATACAAAC	CAACATTACC	CTCCATCCAA	TATACAAACT	AACAACCTCC
Human	CCCCACTCAC	CCATACAAAC	CAACACCACT	CTCCACCTAA	TATACAAATT	AATAACCTCC
	ТАСТАСТААА	AACTCAAATT	AACTCTTTAA	TCTTTATACA	ACATTCCACC	AACCTATCCA
	TACAACCATA	AATAAGACTA	ATCTATTAAA	ATAACCCATT	ACGATACAAA	ATCCCTTTCG
	CACCTTCCAT	ACCAAGCCCC	GACTTTACCG	CCAACGCACC	TCATCAAAAC	ATACCTACAA
	CAACCCCTAA	ACCAAACACT	ATCCCCAAAA	CCAACACACT	CTACCAAAAT	ACACCCCCAA
	CACCCTCAAA	GCCAAACACC	AACCCTATAA	TCAATACGCC	TTATCAAAAC	ACACCCCCAA
	CACTCTTCAG	ACCGAACACC	AATCTCACAA	CCAACACGCC	CCGTCAAAAC	ACCCCTTCAG
	CACCTTCAGA	ACTGAACGCC	AATCTCATAA	CCAACACACC	CCATCAAAGC	ACCCCTCCAA
	CACAAAAAAA	CTCATATTTA	TCTAAATACG	AACTTCACAC	AACCTTAACA	CATAAACATA
	TCTAGATACA	AACCACAACA	CACAATTAAT	ACACACCACA	ATTACAATAC	TAAACTCCCA
	CACAAACAAA	TGCCCCCCA	CCCTCCTTCT	TCAAGCCCAC	TAGACCATCC	TACCTTCCTA
	TTCACATCCG	CACACCCCCA	CCCCCCTGC	CCACGTCCAT	CCCATCACCC	TCTCCTCCCA
	CATAAACCCA	CGCACCCCCA	CCCCTTCCGC	CCATGCTCAC	CACATCATCT	CTCCCCTTCA
	CACAAATTCA	TACACCCCTA	CCTTTCCTAC	CCACGTTCAC	CACATCATCC	CCCCCTCTCA
	CACAAACCCG	CACACCTCCA	CCCCCCTCGT	CTACGCTTAC	CACGTCATCC	CTCCCTCTCA
	CCCCAGCCCA	ACACCCTTCC	ACAAATCCTT	AATATACGCA	ССАТАААТАА	CA
	TCCCACCAAA	TCACCCTCCA	TCAAATCCAC	AAATTACACA	ACCATTAACC	and resting Trees - p.23/59
				AACTTACACA		
	ACACCCTAAG	CCACCTTCCT	СААААТССАА	AACCCACACA	ACCGAAACAA	CA

which gives the ML tree

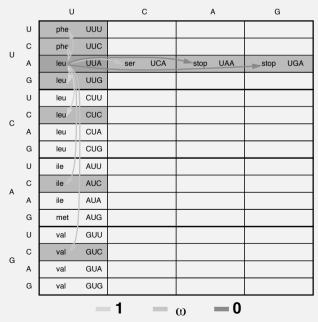
Maximum likelihood tree for the Hasegawa 232-site mitochondrial D-loop data set, with Ts/Tn set to 2, analyzed with maximum likelihood (DNAML)

Models with amino acids

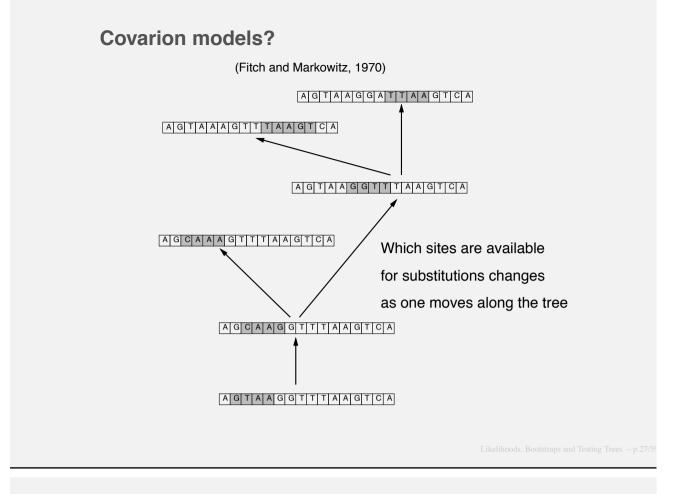
Dayhoff PAM model

Jones-Taylor-Thornton model

specific models for secondary-structure contexts or membrane proteins


Models adapted from Henikoff BLOSUM scoring

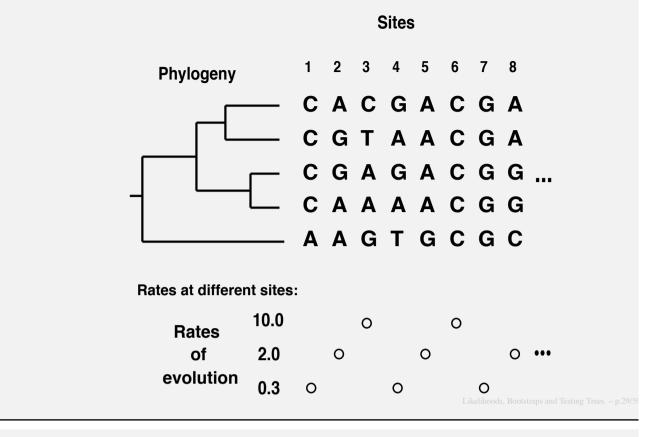
But ... how to take DNA sequence into account? Constraints of code?


Likelihoods, Bootstraps and Testing Trees – p.25/5

Codon models

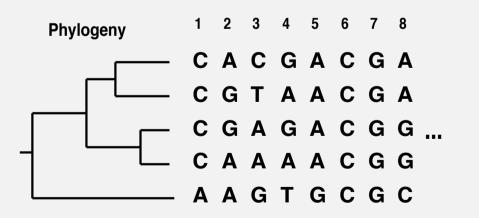
Goldman & Yang, 1994; Muse & Gaut, 1994)

Probabilities of change vary depending on whether amino acid is changing, and to what

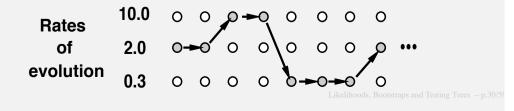


How to calculate likelihood with rate variation

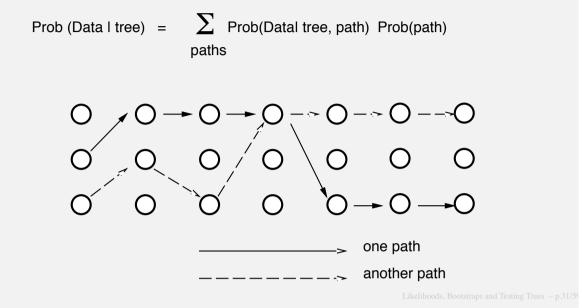
Easy! Since branch lengths always come into transition probability formulas as $r \times t$, can just multiply lengths of branches by the appropriate factor to calculate the likelihood for a site.


(Branch lengths are usually scaled by assuming a rate of 1.)

Rate variation among sites

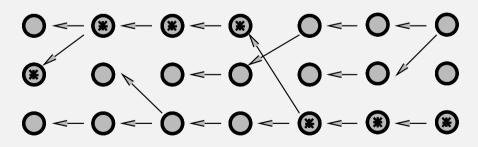


Hidden Markov Model of rate variation among sites


Sites

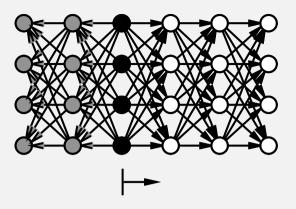
Hidden Markov chain that assigns rates:

Hidden Markov Models sum up over all paths The Hidden Markov Chain method sums up likelihoods over all possible paths through the states:



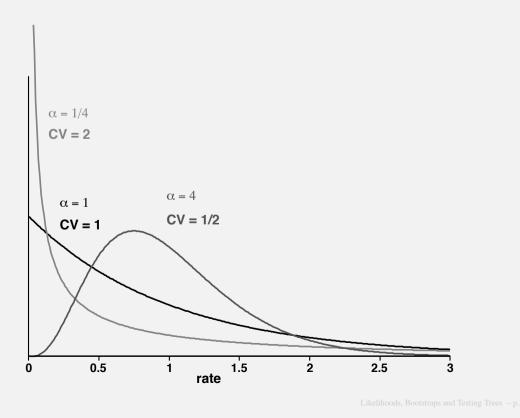
This is done using a recursive algorithm known as the Forwards

The rate combination contributing the most:


We can leave behind pointers that allow us to backtrack

This can be done by a dynamic programming algorithm called the Viterbi Algorithm, well-known in the HMM literature.

(Of course, this one might account for only 0.001 of the likelihood)

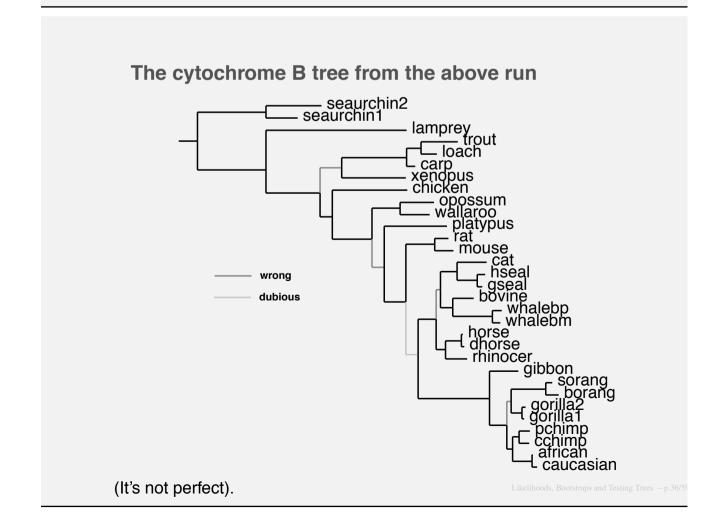

Forwards-Backwards algorithm (marginal probabilities)

The Forwards–Backwards algorithm can calculate the contribution of one rate at a given site to the overall likelihood (a little different from the Viterbi calculation)

Likelihoods, Bootstraps and Testing Trees – p.33/59

The Gamma distribution, used for rates

A numerical example. Cyochrome B


We analyze 31 cytochrome B sequences, aligned by Naoko Takezaki, using the Proml protein maximum likelihood program. Assume a Hidden Markov Model with 3 states, rates:

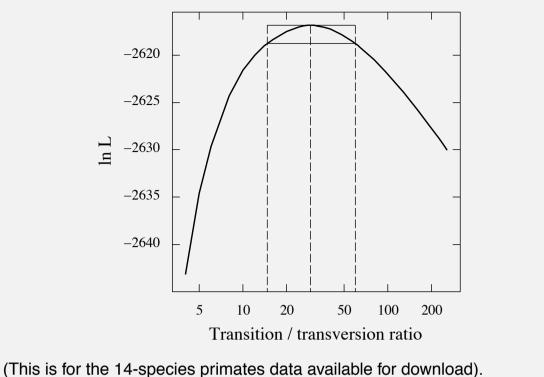
category	rate	probability		
1	0.0	0.2		
2	1.0	0.4		
3	3.0	0.4		

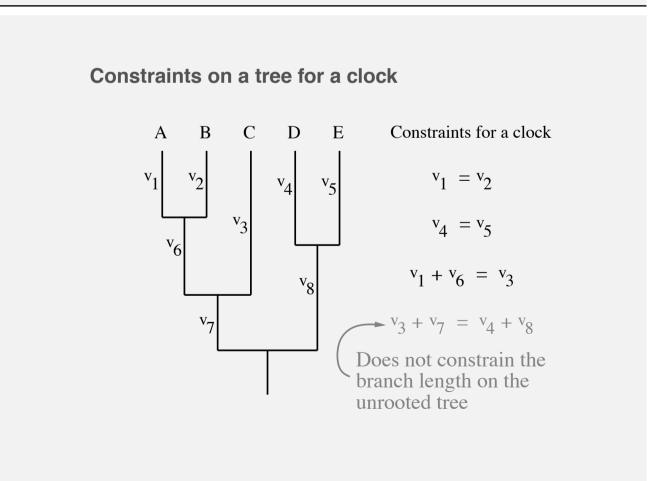
and expected block length 3.

We get a reasonable, but not perfect, tree with the best rate combination inferred to be

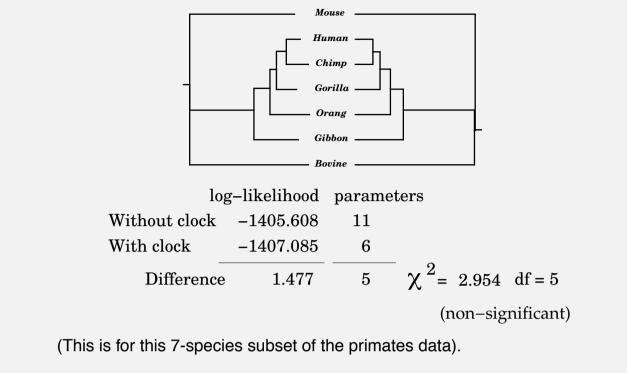
Likelihoods, Bootstraps and Testing Trees - p.35/5

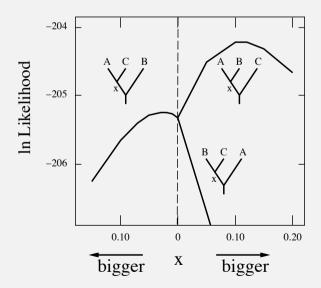
Rates inferred from Cytochrome B


	1333333311 3222322313 3321113222 2133111111 13311331
african caucasian cchimp pchimp gorilla1 gorilla2 borang sorang gibbon bovine whalebm whalebp dhorse horse rhinocer cat gseal hseal mouse	MTPMRK INPLMKLINH SFIDLPTPSN ISAWWNFGSL LGACLILQIT TGLFLAMF
rhinocer cat gseal hseal mouse rat platypus wallaroo opossum chicken xenopus	NI. SH. V.I. SS. IL NI. SH. I.I. AS. V.T.L NI. THI.N IL NI. TH.F.I. AS. V.MV.I NI. SH.FI. AS. V.MV.I NI. SH.I.IV. SI.I.I.L I.I. NI. SH.I.IV. A I.I. NI. SH.I.N.N. I.L. I.I. NI. SH.I.N.N. V.I.L I.I. APNI. SH.I.N.N. SL
carp loach trout lamprey seaurchin1 seaurchin2	A-SL.TH.I.IA.D ALVL.T.LA-SL.TH.I.IA.D ALVVA-NL.TH.L.IA.D ALVA-NL.TH.L.IA.D ALVA-NL.TH.L.IA.D ALVA-NL.TH.I.IA.D ALVA-NL.TH.I.IA.D ALVA-NL.TH.I.IA.D ALVA-NL.TH.I.IA.D ALVA-NL.TH.I.IA.D ALVA-NL.TH.IA.D ALVA-

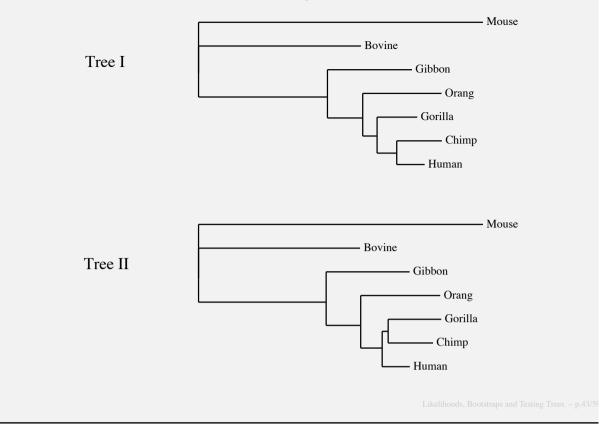

Rates inferred from Cytochrome B

	2223311112	2222222222	2222232112	2222222223	1222221112	333311112
african					HIGRGLYYGS	
caucasian cchimp			• • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • •	L
pchimp gorilla1			 .T			L
gorilla2			.T			HQ
borang sorang			.MH			
gibbon bovine			M			L
whalebm whalebp	TMV	TC	.v	УА	.M	HAFR
dhorse	S.TTV	TC		I	.v	YTFL
horse rhinocer					.V	YTFL
cat gseal					.VM	
ńseal	S.TTV	TC		YM	.V	YTFT
mouse rat	S.TMV		.LQ		.V	YTFL
platypus wallaroo	S.TV S.TLV		.LM		.v	
opossum chicken	S.TLV A.T.LV	C	.LNI	M	.vI	YK
xenopus	A.T.MV	CF	LLN	L.FIY.		•••K••••
carp loach						
trout lamprey	S.IV ANTELV		.LNI .LM.N			
seaurchin2	A.I.LA	SC	.LL.NV	LMYC	G	SNKIV
Seaurchinz	A.TNT	5	• • • • • • • • • • • • • • • • • • • •	••••••••••••••••••••••••••••••••••••••	elihoods, Bootstraps and Te	esting frees - p.3875

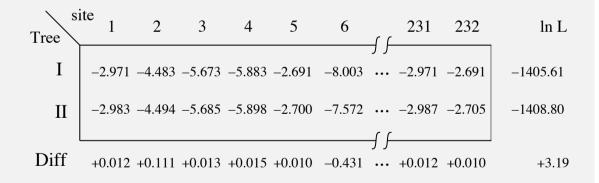

Likelihood curve and its confidence interval

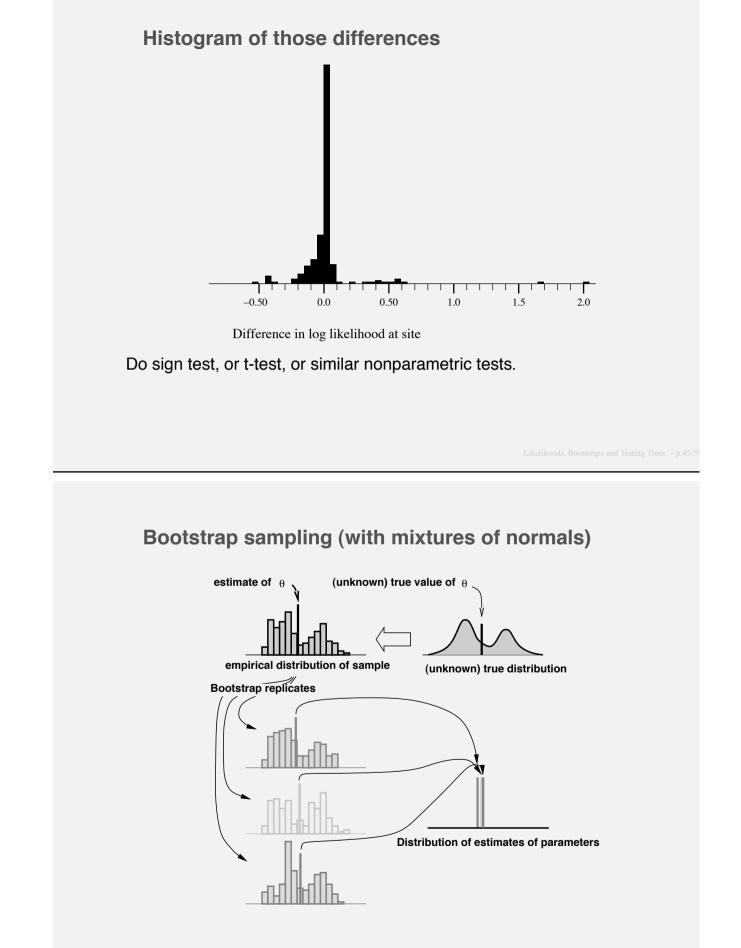


Likelihood-ratio test of molecular clock


Likelihoods, Bootstraps and Testing Trees – p.41/5

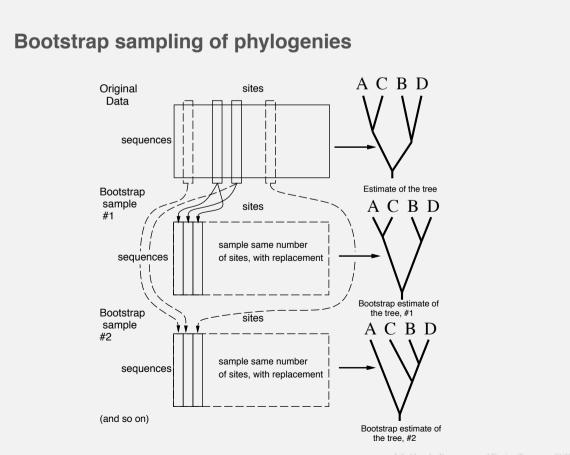
Likelihood surface for three clocklike trees




(These are "profile likelihoods" as they show the largest likelihood for that value of \times , maximizing over the other branch length in the tree.)

Two trees to be tested using KHT test

Table of differences in log-likelihood



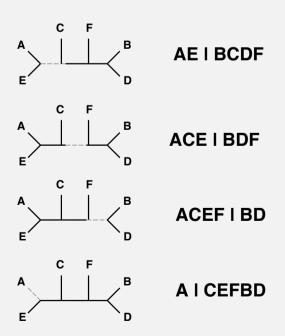
Bootstrap sampling

To infer the error in a quantity, $\theta,$ estimated from a sample of points x_1, x_2, \ldots, x_n we can

- Do the following R times (R = 1000 or so)
- Draw a "bootstrap sample" by sampling n times with replacement from the sample. Call these x₁^{*}, x₂^{*}, ..., x_n^{*}. Note that some of the original points are represented more than once in the bootstrap sample, some once, some not at all.
- Estimate θ from each of the bootstrap samples, call these $\hat{\theta}_k^*$ (k = 1, 2, ..., R)

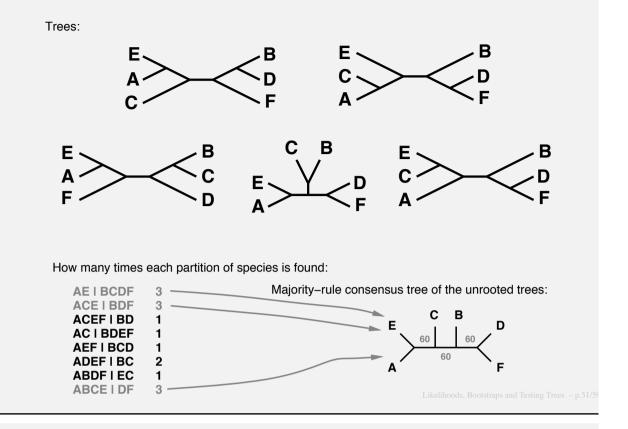
Likelihoods, Bootstraps and Testing Trees - p.47/5

ikelihoods, Bootstraps and Testing Trees - p.48/5

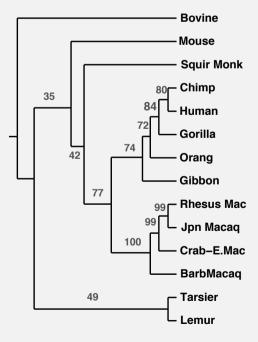

Analyzing bootstraps with phylogenies

The sites are assumed to have evolved independently given the tree. They are the entities that are sampled (the x_i). The trees play the role of the parameter. One ends up with a cloud of R sampled trees.

To summarize this cloud, we ask, for each branch in the tree, how frequently it appears among the cloud of trees. We make a tree that summarizes this for all the most frequently occurring branches. This is the majority rule consensus tree of the bootstrap estimates of the tree.


Likelihoods, Bootstraps and Testing Trees - p.49/5

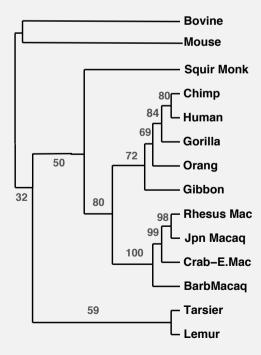
Partitions from branches in an (unrooted) tree



and so on for all the other external (tip) branches

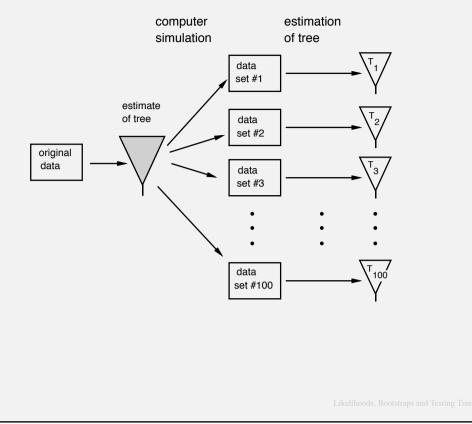
The majority-rule consensus tree

Bootstrap sampling of a phylogeny


In this example, parsimony was used to infer the tree.

Potential problems with the bootstrap

- Sites may not evolve independently
- Sites may not come from a common distribution (but you can consider them to be sampled from a mixture of possible distributions)
- If do not know which branch is of interest at the outset, a "multiple-tests" problem means that the most extreme P values are overstated
- P values are biased (too conservative)
- Bootstrapping does not correct biases in phylogeny methods


Likelihoods, Bootstraps and Testing Trees - p.53/5

Delete-half jackknife P values

In this example, parsimony was used to infer the tree.

A diagram of the parametric bootstrap

References

Likelihood

Edwards, A. W. F. and L. L. Cavalli-Sforza. 1964. Reconstruction of evolutionary trees. pp. 67-76 in *Phenetic and Phylogenetic Classification*, ed. V. H. Heywood and J. McNeill. Systematics Association Publication No. 6. Systematics Association, London. [The founding paper for parsimony and likelihood for phylogenies, using gene frequencies]

Jukes, T. H. and C. Cantor. 1969. Evolution of protein molecules. pp. 21-132 in *Mammalian Protein Metabolism*, ed. M. N. Munro. Academic Press, New York. [The Jukes-Cantor model, in one formula and a couple of sentences]

Neyman, J. 1971. Molecular studies of evolution: a source of novel statistical problems. In *Statistical Decision Theory and Related Topics*, ed. S. S. Gupta and J. Yackel, pp. 1-27. New York: Academic Press. [First paper on likelihood for molecular sequences. Neyman was a famous statistician.]
Felsenstein, J. 1973. Maximum-likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. *Systematic*

Zoology **22:** 240-249. [The pruning algorithm, parsimony is not same as likelihood]

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. *Journal of Molecular Evolution* **17:** 368-376. [Making likelihood useable for molecular sequences]

Likelihoods, Bootstraps and Testing Trees - p.56/5

(more references)

Yang, Z. 1994. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. *Molecular Biology and Evolution* **10:** 1396-1401. [Use of gamma distribution of rate variation in ML phylogenies]

Yang, Z. 1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. *Journal of Molecular Evolution* **39:** 306-314. [Approximating gamma distribution in ML phylogenies by an HMM]

Yang, Z. 1995. A space-time process model for the evolution of DNA sequences. *Genetics* **139**: 993-1005. [Allowing for autocorrelated rates along the molecule using an HMM for ML phylogenies]

Felsenstein, J. and G. A. Churchill. 1996. A Hidden Markov Model approach to variation among sites in rate of evolution *Molecular Biology and Evolution* 13: 93-104. [HMM approach to evolutionary rate variation]
Thorne, J. L., N. Goldman, and D. T. Jones. 1996. Combining protein evolution and secondary structure. *Molecular Biology and Evolution* 13 666-673. [HMM for secondary structure of proteins, with phylogenies]
Bootstraps etc.

Efron, B. 1979. Bootstrap methods: another look at the jackknife. *Annals of Statistics* **7:** 1-26. [The original bootstrap paper]

Likelihoods, Bootstraps and Testing Trees - p.57/59

(more references)

Margush, T. and F. R. McMorris. 1981. Consensus *n*-trees. *Bulletin of Mathematical Biology* **43**: 239-244i. [Majority-rule consensus trees] Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* **39**: 783-791. [The bootstrap first applied to phylogenies]

Zharkikh, A., and W.-H. Li. 1992. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences. I. Four taxa with a molecular clock. *Molecular Biology and Evolution* **9:** 1119-1147. [Discovery and explanation of bias in P values]

Künsch, H. R. 1989. The jackknife and the bootstrap for general stationary observations. *Annals of Statistics* **17:** 1217-1241. [The block-bootstrap] Wu, C. F. J. 1986. Jackknife, bootstrap and other resampling plans in regression analysis. *Annals of Statistics* **14:** 1261-1295. [The delete-half jackknife]

Efron, B. 1985. Bootstrap confidence intervals for a class of parametric problems. *Biometrika* **72:** 45-58. [The parametric bootstrap]

Templeton, A. R. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. *Evolution* **37**: 221-224. [The first paper on the KHT test] (more references)

Goldman, N. 1993. Statistical tests of models of DNA substitution. *Journal* of *Molecular Evolution* **36:** 182-98. [Parametric bootstrapping for testing models]

Shimodaira, H. and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. *Molecular Biology and Evolution* **16:** 1114-1116. [Correction of KHT test for multiple hypothesis]

Prager, E. M. and A. C. Wilson. 1988. Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. *Journal of Molecular Evolution* **27:** 326-335. [winning-sites test]

Hasegawa, M. and H. Kishino. 1994. Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree.

Molecular Biology and Evolution 11: 142-145. [RELL probabilities] General reading

Felsenstein, J. 2004. *Inferring Phylogenies*. Sinauer Associates, Sunderland, Massachusetts. [Book you and all your friends must rush out

and buy] Yang, Z. 2006. *Computational Molecular Evolution*. Oxford University Press, Oxford. [Well-thought-out book on molecular phylogenies]

Semple, C. and M. Steel. 2003. *Phylogenetics*. Oxford University Press,

Oxford. [Good for a mathematical audience]

ikelihoods, Bootstraps and Testing Trees - p.59/59