Max. likelihood & Bayesian techniques are both likelihood-based.

Weaknesses of likelihood for phylogeny reconstruction:
1) Computational tractability
2) Based on overly simplistic evolutionary models.

But,

a) All phylogeny reconstruction methods are based on
assumptions but some (e.g. parsimony) are not based on explicit
ones. For methods based on unstated assumptions, we need

to worry not just whether the assumptions are realistic but also
we need to worry about what they are.

b) Likelihood methods allow assumptions to be rigorously tested.
When an assumption is found to be particularly poor, it can be
replaced with a better one (i.e., models will improve over time!)
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a) All phylogeny reconstruction methods are based on
assumptions but some (e.g. parsimony) are not based on explicit
ones. For methods based on unstated assumptions, we need

to worry not just whether the assumptions are realistic but also
we need to worry about what they are.

b) Likelihood methods allow assumptions to be rigorously tested.
When an assumption is found to be particularly poor, it can be
replaced with a better one (i.e., models will improve over time!)




Strengths of likelihood methods:

1. Explicit Assumptions — we know what we're assuming.

2. Use all information in a data set. Distance methods, for
example, do not. This is part of the explanation for success
of likelihood methods in simulations — they tend to yield
estimates that are closer to the truth than other methods.

3. Likelihood approaches are consistent. Estimates get better
as amount of data increases. (Caveat: violation of model
assumptions may cause loss of consistency property)

4. Because likelihood applied to so many statistical situations
in addition to phylogenetics, powerful theory & tools for
performing likelihood analyses have developed. This
theory and these tools (e.g., tools for hypothesis
testing) can be applied to phylogenetics.

5. Likelihood lets you know how good estimate is, in addition
to what estimate is.

Mechanistic versus Phenomenological
Models of Sequence Evolution

see Ph.D. thesis by Nicolas Rodrigue

("Phylogenetic structural modeling of
molecular evolution®, 2008, University
of Montreal)

(see also Rodrigue & Philippe. 2010. Trends
in Genetics 26:248-252)




One good idea for more
realistic models ...

TUFFLEY, C., and

M. A. STEEL. 1998.
Modeling the covarion
hypothesis of nucleotide
substitution. Math. Biosci.
147:63-91.
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FiG. 1.—Distribution of rates across sites and lincages under three
models of evolution. Each tree plot describes the distribution of rates
across lineages for a particular site under the considered model. Three
categories of rate are assumed, represented by different line thickness-
es. Under the equal-rates (ER) model, all sites evolve at a constant,
unigue, moderate rate. Under the among-site tion (ASRV)
maodel, each site has its own rate (low, moderate, or high), which is
constant  between  lin .. Under the site-specific rate variation
(SSRV) model, the rate of a site can switch between categories; a site
has distinct rates in distinet lineages.
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From Galtier. 2001. Mol. Biol. Evol. 18(5):866-873.




Tuffley/Steel -type model

Slow Fast
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Substitution Rates: ¢q>r
Switching rates: f (slow to fast), s (fast to slow)

Dayhoff model of protein evolution (see Dayhoff et al. 1972;
Dayhoff et al. 1978) operates at the level of the 20 amino

acid types.
n;is the probability of amino acid type i

aji is the instantaneous rate of replacement from amino acid i
to amino acid j

Dayhoff model is most general time-reversible 20-state model
of amino acid replacement.

This means T 0 = 5% for all i and j.




It is important to separate the Dayhoff model of protein evolution
from:

1. The procedure used by Dayhoff and collaborators to estimate the

aij AND

2. The data set upon which the aij estimates were based.

Dayhoff and collaborators exploited the fact that the probability

of replacements from amino acid type i to type j (i not equal to j)
is approximately linear in time for small amounts of time.

In other words, the probability of a replacement from amino acid
type i to a different type j is approximately aijt if t represents some
small amount of time.

Subsequent studies (e.g.,Jones et al. 1992) adopted the Dayhoff
model but employed different data sets and parameter estimation

procedures.
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Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Vval

Figure 80. Numbers of accepted point mutations (X 10) accumu- two exchanges are shown. Fractional exchanges result when
lated from closely related sequences. Fifteen hundred and seventy- ancestral sequences are ambiguous.




ORIGINAL AMINO ACID

A R N D C Q E G H 1 L K M F P S T W Y v
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Figure 82. Mutation probability matrix for the evolutionary 1 accepted point mutation per 100 amino acids. Thus, there is a
distance of 1 PAM. An element of this matrix, Mii' gives the prob- 0.56% probability that Asp will be replaced by Glu. To simplify
ability that the amino acid in column j will be replaced by the the appearance, the elements are shown multiplied by 10,000.
amino acid in row i after a given evolutionary interval, in this case
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Figure 83. Mutation probability matrix for the evolutionary dis- sequence will contain Ala in the second. There is a 3% chance
tance of 250 PAMs. To simplify the appearance, the elements that it will contain Arg, and so forth. The relationship of two se-
are shown multiplied by 100. In comparing two sequences of quences at a distance of 250 PAMs can be demonstrated by sta-
average amino acid frequency at this evolutionary distance, there tistical methods.

is @ 13% probability that a position containing Ala in the first
p
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Cys |Ser Thr Pro Ala Gly |Asn Asp Glu

Gln | His Arg Lys |Met Ile Leu Val |Phe Tyr Trp

Figure 84. Log odds matrix for 250 PAMs. Elements are shown
multiplied by 10. The neutral score is zero. A score of ~10 means
that the pair would be expected to occur only one-tenth as fre-
quently in related sequences as random chance would predict, and

a score of +2 means that the pair would be expected to occur 1.6
times as frequently. The order of the amino acids has been ar-
ranged to illustrate the patterns in the mutation data.

Table 23
Correspondence between Observed Differences
and the Evolutionary Distance
Observed Evolutionary
Percent Distance

Difference in PAMs
1 1
5 5

10 11
15 17
20 23
25 30
30 38
35 47
40 56
45 67
50 80
55 94
60 112
65 133
70 159
75 195
80 246
85 328




Table 21
Relative Mutabilities of the Amino Acids®

Asn 134 His 66
Ser 120 Arg 65
Asp 106 Lys 56
Glu 102 Pro 56
Ala 100 Gly 49
Thr 97 Tyr 41
lle 96 Phe 41
Met 94 Leu 40
Gin 93 Cys 20
Val 74 Trp 18

3T he value for Ala has been arbitrarily set at 100.

Table 22

Normalized Frequencies of the Amino Acids
in the Accepted Point Mutation Data

Gly 0.089 Arg 0.041
Ala 0.087 Asn 0.040
Leu 0.085 Phe 0.040
Lys 0.081 Gln 0.038
Ser 0.070 Ile 0.037
Val 0.065 His 0.034
Thr 0.058 Cys 0.033
Pro 0.051 Tyr 0.030
Glu 0.050 Met 0.015

Asp 0.047 Trp 0.010




Inspired by Lartillot and Philippe's CAT model of
amino acid replacement that permits variation of
preferred residues among sites, there is active
development of sequence evolution models that

allow variation of evolutionary processes among sites
without prespecifying the number of categories,

the nature of categories, or which sites are in which
categories.

Key Ingredient: "Dirichlet Process” as a prior for the
number of categories and for the probabilities of the
categories.

Nicolas Lartillot and Hervé Philippe. 2004. A Bayesian Mixture Model
for Across-Site Heterogeneities in the Amino-Acid Replacement Process.
Mol. Biol. Evol. 21(6):1095-1109. 2004

Dirichlet Process Priors ("Chinese restaurant process”,
not same as Dirichlet distribution):

Useful to specify prior distribution for situations when
number of categories is unknown and where prior
probability of each possible category needs determination.

Additional applications in Evolution Include:

Characterization of population structure
Huelsenbeck and Andolfatto. 2007. Genetics. 175:1787-1802.

Variation in nonsyn. and synonymous rates among sites
Huelsenbeck et al. 2006. PNAS 103(16): 6263-6268.

Variation in evolutionary rate across a phylogeny
Heath et al. 2012. Mol. Biol. Evol. 29(3): 939-955.




Codon Models: Evolution occurs at the DNA level rather than
at the amino acid level.

It makes sense to frame a model of protein evolution in terms
of codons rather than amino acid types (Schoniger et al. 1990;
6oldman and Yang 1994: Muse and 6aut 1994).

Codon-based models are typically framed in terms of 61 codon-
states rather than 64 codon-states because the common genetic
codes have three stop codons, and the possibility that a stop
codon may appear or disappear from a sequence is not allowed.

One simplification that is often adopted holds that changes from
one codon to another are only possible when the two codons
differ at exactly one of the three codon positions.

The instantaneous rates of other changes between codons are
set to O.

Typical parameterization of a codon model when physicochemical
differences between amino acids are ignored...

Instantaneous rate «; j from codon ¢ to codon j is set to 0 if 7 and j
differ at more than one nucleotide or if j encodes a premature stop
codon. For cases where 7 and j differ by exactly one nucleotide, rate
matrix entries are:

uT; for a synonymous transversion

umjk  for a synonymous transition

umjw  for a nonsynonymous transversion

umjkw for a nonsynonymous transition

az’] =

u, 75, and & reflect mutation rates

w > 1 means positive diversifying selection (i.e., nonsyn. rates
higher than they would be if changes were synonymous)

Other kinds of positive selection exist (e.g., positive directional se-
lection)




The previous rate matrix can be modified so that each codon k has
its own parameter wy. The rates then become:

umy, for a synonymous transversion

umjk  for a synonymous transition
Qij =
umjwy  for a nonsynonymous transversion

umjkwy for a nonsynonymous transition

As with the rate heterogeneity among sites treatment, the distribu-
tion of wy values among codons can be modelled. Often, we want
to know if certain codons have wy values that exceed 1.

Alternatively, we can assume all codons share the same value of w
but that w values vary among branches on the tree. The rate matrix
then becomes:

U for a synonymous transversion
um;k  for a synonymous transition

umjwp for a nonsynonymous transversion

um;kwp for a nonsynonymous transition

where wp is the parameter value for branch B. Many other pos-
sibilities for parameterizing codon models exist. and codon models
can become very elaborate.

For example, Pedersen and colleagues (1998) carefully designed a
codon model to reflect the fact that CpG dinucleotide levels are
depressed in lentiviral genes.




Codon models have received attention for their potential
ability to detect positive selection (Nielsen and Yang 1998).

Early methods for detecting positive selection from protein-
coding DNA sequence data were designed to looked for an
“excess” of nonsynonymous amino acid replacements throughout
the sequence.

Codon methods offer the potential of detecting positive
selection at individual sites and for detecting the existence
of a small proportion of sites at which positive selection may
operate.

Best statistical technique for detecting positive selection is a
contentious issue at the moment...

Some future directions for codon-based models ...

Evolutionary changes that simultaneously affect two
consecutive positions could be allowed (Averof et al. 2000
have claimed empirical evidence for these kinds of changes).

Reconciliation of codon-based models with classical population
genetic models - some progress has been made (see Halpern
and Bruno 1998).

Improved treatment of effects of chemical similarity of amino
acids on protein evolution




For change from Sequence i to Sequence j
where i & j differ only at one sequence
position, evolutionary rate fromitojis

Rij where

Rij = (Mutation Rate) x (Fixation Probability)

(see Halpern & Bruno. 1998. MBE 15:910-917)

For change from Sequence i to Sequence j
where i & j differ only at one sequence
position, evolutionary rate from i to j

is Rij where

Rij = (Mutation Rate) x (Fixation Probability)

(see Halpermi & Bruno. 1998. MBE 15:910-917)

With low mutation rates, this depends on effective pop'n size
“N”and relative fitness of j minus i (call this difference “s”)

Population Genetic formulae for fixation
probability allows estimation of Ns




What justifies the assumption of phylogenetic
models that sequences change over time
according to a Markov process?

} “Now"




“Phylogenetic lineage” Dead

Dead

“Phylogenetic lineage” §

Maybe




Fixation probabilities depend on
the other alleles in the population

new new
mutation mutation
ﬁ ﬁ

Fitness:
1+s

Towards more general dependence among sequence
positions in molecular evolution...

Hwang, D.G.,and P.Green. 2004. Bayesian Markov chain
Monte Carlo sequence analysis reveals varying neutral
substitution patterns in mammalian evolution. Proc. Natl.
Acad.Sci.U.S.A.101(39):13994-14001

Jensen, J.L.,and A.K.Pedersen. 2000. Probabilistic models
of DNA sequence evolution with context dependent rates
of substitution. Adv. Appl.Prob.32:499-517

Pedersen A.-M.K.and J.L.Jensen.2001. A
Dependent-Rates Model and an MCMC-Based
Methodology for the Maximum-Likelihood Analysis of
Sequences with Overlapping Reading Frames. Mol. Biol.
Evol. 18(5):763-776.

Robinson, D.M., D.T. Jones, H. Kishino, N. Goldman, and J.L.
Thorne. 2003. Protein evolution with dependence among
codons due to tertiary structure. Mol. Biol. Evol. 20(10):
1692-1704.

Siepel, A., and D.Haussler. 2004a. Phylogenetic Estimation
of Context-Dependent Substitution Rates by Maximum
Likelihood. Mol. Biol. Evol.21:468-488.

Siepel, A., and D.Haussler. 2004b. Combining
phylogenetic and hidden Markov models in biosequence
analysis. J Comput Biol. 11:413-428.




4-state substitution model

...TAC... ... TAC... ...TAC...
...6AC...

n
+
+

...TAC...

...TAT...
...TGC. ..

...TGT...

Y ...TGT. ..

..T6T... .. T6T... ..TGT...
End




Rij To
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4be 4" rate matrix

Rate away from sequence ¢ is

Rje = R;j

J,J 71

where R;; is rate from sequence
1 to sequence j.




Consider T generations of evolution where

... Sequence 0 changes to Sequence 1 in
generation T

... Sequence 1 changes to Sequence 2 in
generationT,

... No other changes occur

What is probability of this possible history?

Generation Probability
0 —TTG CT T -1
i (1-R,)"
T —1GHGaTl— R,
A
T, TGGHGAT— R,

T —1GG GAT




Discrete Time
Generatlon Probablllty
m
TTG =JGAT

‘ (1_R1.)T T-1
T, TGG =] GAT R12
(1—R2.)
T TGG

Continuous Time

T| me Prob. Density (almost)
Eﬂ
‘ 0<$XIO( R,{T-0))
TTG P=GAT
‘ R exp(-R {T;T))
T, TGG =] GAT
exp(-Rz. T'Tz))
T TGG

(T represents many generations,

rates per generation are small)

Data Augmentation:

... an inference strategy for case where it is hard to calculate likelihoo

of observed data

d

... Strategy is to facilitate likelihood computation by pretending that
more is observed than actually is observed.

For example, might not be able to calculate likelihoods with models
of sequence evolution but might be able to calculate likelihoods
if entire evolutionary history was known.

Landis et al. ("Bayesian analysis of biogeography when the number
of areas is large”. Systematic Biology. 2013, Advance Access) employ
this statistical strategy to infer history of ancestral ranges of species.




Most models of sequence
change ignore phenotypel!

?

HzHli}

Genotype Phenotype
?

Interspecific

Rates Phenotype

1. Protein Structure
2. RNA Sec Structure
3. Antigenicity

Population
Genetics




Interspecific

Rates Phenotype
Population
Genetics

Biological Inspiration:

Parisi & Echave. 2001.
Mol. Biol. Evol. 18:750-756.

Statistical Inspiration:

Jensen & Pedersen. 2000.
Adv. Appl. Prob. 32:499-517

Pedersen & Jensen. 2001.
Mol. Biol. Evol. 18:763-776




Rate notation and
assumptions

Rate R;; from Sequence ;
to j is O if j has stop codon
or if 7« and j differ at more

than 1 position

Otherwise, assume : and j
differ at 1 position where j

has nucleotide type h

Model with independence
among codons

Rij = ...

’lLT('h if synonymous transversion
UTp K  if synonymous transition
UTpW  if nonsyn. transversion

uwhmw if nonsyn. transition

w > 1 is positive selection




Protein structure changes far more slowly than
protein sequence. There seem to be constraints
on protein sequence evolution that maintain
protein structure.

We assume tertiary structure known and unchanging
Fold recognition and sequence-structure compatibility
Idea underlying our model: Rate from sequenceito j
should be low if j does not fold as well into known

structure as i and high if j folds into known structure
better thanii

Sequence-structure compatibility
assessed by GenThreader software of
David Jones

Ef(i) Is solvent accessibility score of
sequence i folded into known structure

Ep(i) is pairwise interaction score of
sequence i folded into known structure

(low scores fit better than high scores)




Scores for Actual Versus Permuted Sequences
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Protein tertiary structure as phenotype

E(i) (Ep(i)) is solvent accessibility (pairwise)

score

of ¢

f & p relate scores to evolutionary rates

uwhwe(Ef(i)_Ef(j>)f+(Ep(i>—Ep(j>)p

uwhﬁ;we(Ef(i)_Ef(j))f+(Ep(i)—Ep(j))p

umy, syn. transversion
uTHK syn. transition

nonsyn. transv.

nonsyn. transi.
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Why model dependence among
codons due to protein structure?

1. Quantify impact of protein
Structure on protein evolution

2. Ancestral Sequence
Reconstruction

3. Detect positive selection

4. Infer order of selectively
beneficial nucleotide substitutions

5. Predict evolution?
(probably not)




5S rRNA secondary structure
(from http://rose.man.poznan.pl/55Data/)
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red and green positions are insertions/deletions
relative to most sequences

black circles with yellow letters are highly
conserved throughout eukaryotes

(following results from Jiaye Yu)

RNA secondary structure as phenotype

E(i) is approximate energy of Sequence i using
known secondary structure

f relates energy to evolutionary rates

h is nucleotide type in Sequence j; at sole
position where 7 and j differ

R — uwhe(E@_E(j))f for a transversion
" uwh/fe(E(i)_E(j»f for a transition.

S EO=EUGDS > 1 s positive selection




5S rRNA sequences
(length 119 positions)
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