Package | Description |
---|---|
Ancestors |
Provides classed to calculate ancestral reconstruction.
|
Likelihood |
Provides classes for calculating the likelihood of a tree given a model and
an alignment.
|
Models |
Provides classes for defining a phylogenetic model.
|
ModelTest | |
Optimizers |
Provides classes for optimising a likelihood.
|
Parameters |
Provides classes for defining parameters used in the various calculations.
|
Simulations |
Provides a class to create simulated data.
|
Trees |
Provides classes to define a tree.
|
Modifier and Type | Method and Description |
---|---|
abstract Alignment |
AncestralJoint.calculate(Parameters params)
Calculates the reconstruction
|
Alignment |
AncestralJointBB.calculate(Parameters p) |
Alignment |
AncestralJointDP.calculate(Parameters params) |
AncestralMarginal.Result |
AncestralMarginal.calculate(Parameters params)
Calculates the reconstruction
|
Modifier and Type | Method and Description |
---|---|
Parameters |
Likelihood.getParameters()
Gets the parameters used to calculate the likelihood
|
Modifier and Type | Method and Description |
---|---|
R |
Calculator.calculate(Parameters p)
Abstract method for actually calculating the likelihood
|
abstract SiteLikelihood |
Calculator.calculateSite(Site s,
Tree t,
Parameters p,
Probabilities tp,
java.util.Map<java.lang.String,SiteLikelihood.NodeLikelihood> nl)
Calculate the likelihood for a single site.
|
SiteLikelihood |
StandardCalculator.calculateSite(Site s,
Tree t,
Parameters p,
Probabilities tp,
java.util.Map<java.lang.String,SiteLikelihood.NodeLikelihood> nl) |
abstract R |
Calculator.combineSites(java.util.Map<Site,SiteLikelihood> sites,
Parameters p)
Combines the likelihood from each site into a alignment likelihood
|
StandardLikelihood |
StandardCalculator.combineSites(java.util.Map<Site,SiteLikelihood> sites,
Parameters p) |
protected java.util.Map<Site,SiteLikelihood> |
Calculator.siteCalculate(Parameters p)
Calculates the likelihood for each site
|
Constructor and Description |
---|
Calculator.SiteCalculator(Site s,
Tree t,
Parameters p,
Probabilities tp,
java.util.Map<java.lang.String,SiteLikelihood.NodeLikelihood> nl)
Standard constructor
|
ConfidenceInterval(StandardCalculator l,
Parameters p)
Default constructor
|
Likelihood(double likelihood,
Parameters p)
Creates a simple likelihood result
|
Probabilities(Model m,
Tree t,
Parameters p)
Constructor
|
Modifier and Type | Method and Description |
---|---|
Parameters |
DNAModelFactory.getParameters()
Gets the parameters for the relevant model
|
Modifier and Type | Method and Description |
---|---|
static Model |
DuplicationModelFactory.BD_NoZero_Gamma(Parameters p,
int num,
int numCats)
Creates a Birth Death model with no zero state and gamma distributed
rates-across sites.
|
static Model |
DuplicationModelFactory.BD_NoZero_Gamma(Parameters p,
int num,
int numCats,
boolean fixed)
Creates a Birth Death model with no zero state and gamma distributed
rates-across sites.
|
static Model |
DuplicationModelFactory.BD_NoZero(Parameters p,
int num)
Creates a Birth Death model with no zero state.
|
static Model |
DuplicationModelFactory.BD_NoZero(Parameters p,
int num,
boolean fixed)
Creates a Birth Death model with no zero state.
|
static Model |
DuplicationModelFactory.BDI_Gamma(Parameters p,
int num,
int numCats)
Creates a simple BDI model with gamma-distributed rate
across sites.
|
static Model |
DuplicationModelFactory.BDI_Gamma(Parameters p,
int num,
int numCats,
boolean fixed)
Creates a simple BDI model with gamma-distributed rate
across sites
|
static Model |
DuplicationModelFactory.BDI(Parameters p,
int num)
Creates a simple BDI model.
|
static Model |
DuplicationModelFactory.BDI(Parameters p,
int num,
boolean fixed)
Creates a simple BDI model
|
static Model |
DuplicationModelFactory.BDIE_Gamma(Parameters p,
int num,
int numCats)
Creates a simple BDI model with gamma-distributed rate
across sites.
|
static Model |
DuplicationModelFactory.BDIE_Gamma(Parameters p,
int num,
int numCats,
boolean fixed)
Creates a simple BDIE model with gamma-distributed rate
across sites
|
static Model |
DuplicationModelFactory.BDIE(Parameters p,
int num,
boolean fixed)
Creates a simple BDIE model
|
static Model |
DNAModelFactory.Felsenstein81_Gamma(Parameters p,
int numCats)
Creates an instance of a JFelsenstein 81 model with gamma-distributed rate
across sites
|
static Model |
DNAModelFactory.Felsenstein81(Parameters p)
Creates an instance of a Felsenstein 81 model
|
static Model |
DNAModelFactory.GTR_Gamma(Parameters p,
int numCats)
Creates an instance of a General Time Reversible model with gamma-distributed rate
across sites
|
static Model |
DNAModelFactory.GTR(Parameters p)
Creates an instance of a General Time Reversible model
|
static Model |
DNAModelFactory.HKY_Gamma(Parameters p,
int numCats)
Creates an instance of a HKY model with gamma-distributed rate
across sites
|
static Model |
DNAModelFactory.HKY(Parameters p)
Creates an instance of a HKY model
|
static Model |
DNAModelFactory.JukesCantor_Gamma(Parameters p,
int numCats)
Creates an instance of a Jukes-Cantor model with gamma-distributed rate
across sites
|
static Model |
DNAModelFactory.JukesCantor(Parameters p)
Creates an instance of a Jukes-Cantor model
|
static Model |
DNAModelFactory.Kimura_Gamma(Parameters p,
int numCats)
Creates an instance of a Kimura 2-parameter model with gamma-distributed rate
across sites
|
static Model |
DNAModelFactory.Kimura(Parameters p)
Creates an instance of a Kimura 2-paramter model
|
static Model |
DuplicationModelFactory.Parsimony_Gamma(Parameters p,
int num,
int numCats)
Creates a simple parsimony-style model with gamma-distributed rate
across sites.
|
static Model |
DuplicationModelFactory.Parsimony_Gamma(Parameters p,
int num,
int numCats,
boolean fixed)
Creates a simple parsimony-style model with gamma-distributed rate
across sites
|
static Model |
DuplicationModelFactory.Parsimony(Parameters p,
int num)
Creates a simple parsimony-style model
|
static Model |
DuplicationModelFactory.Parsimony(Parameters p,
int num,
boolean fixed)
Creates a simple parsimony-style model
|
static Model |
RYModelFactory.RY_Gamma(Parameters p,
int numCats)
Creates an instance of a RY model with gamma-distributed rate
across sites
|
static Model |
RYModelFactory.RY(Parameters p)
Creates an instance of a RY model
|
void |
Model.setParameters(Parameters p)
Sets the parameters of a model to the values contained in the
Parameters data structure. |
void |
RateCategory.setParameters(Parameters p)
Updates the parameters in the RateCategory and recalculates matrices /
frequencies if necessary.
|
Modifier and Type | Method and Description |
---|---|
Parameters |
TestInstance.getParameters()
Get the parameters associated with this instance
|
Modifier and Type | Method and Description |
---|---|
double |
HypothesisTest.test(java.util.Map<java.lang.String,Tree> t,
Alignment a,
Alignment unobserved,
Parameters nullParams,
Parameters altParams)
Does a hypothesis test on the given data and gives a p-value
|
double |
HypothesisTest.test(java.util.Map<java.lang.String,Tree> t,
Alignment a,
Alignment unobserved,
Parameters nullParams,
Parameters altParams,
java.util.Map<java.lang.String,java.lang.String> recode)
Does a hypothesis test on the given data and gives a p-value
|
double |
HypothesisTest.test(Tree t,
Alignment a,
Alignment unobserved,
Parameters nullParams,
Parameters altParams)
Does a hypothesis test on the given data and gives a p-value
|
double |
HypothesisTest.test(Tree t,
Alignment a,
Alignment unobserved,
Parameters nullParams,
Parameters altParams,
java.util.Map<java.lang.String,java.lang.String> recode)
Does a hypothesis test on the given data and gives a p-value
|
Constructor and Description |
---|
TestInstance(Calculator<Likelihood> c,
Parameters p)
Creates an instance
|
TestInstance(Calculator<Likelihood> c,
Parameters p,
Adapter adapter,
Alignment distinct)
Creates a named instance.
|
TestInstance(Calculator<Likelihood> c,
Parameters p,
java.lang.String name)
Creates a named instance.
|
TestInstance(Calculator<Likelihood> c,
Parameters p,
java.lang.String name,
Adapter adapter,
Alignment distinct)
Creates a named instance.
|
Modifier and Type | Method and Description |
---|---|
R |
Optimizable.calculate(Parameters p)
The optimisable likelihood function.
|
<R extends Likelihood> |
ConjugateGradient.maximise(Optimizable<R> c,
Parameters p) |
<R extends Likelihood> |
GoldenSection.maximise(Optimizable<R> l,
Parameters params) |
<R extends Likelihood> |
NelderMead.maximise(Optimizable<R> l,
Parameters params) |
<R extends Likelihood> |
Optimizer.maximise(Optimizable<R> l,
Parameters p)
Maximises the likelihood, logging to screen.
|
<R extends Likelihood> |
ConjugateGradient.maximise(Optimizable<R> c,
Parameters p,
java.io.File log) |
<R extends Likelihood> |
GoldenSection.maximise(Optimizable<R> l,
Parameters params,
java.io.File log) |
<R extends Likelihood> |
NelderMead.maximise(Optimizable<R> l,
Parameters params,
java.io.File log) |
<R extends Likelihood> |
Optimizer.maximise(Optimizable<R> l,
Parameters params,
java.io.File log)
Maximises the likelihood, logging to a file.
|
Modifier and Type | Method and Description |
---|---|
Parameters |
Parameters.clone() |
static Parameters |
Parameters.fromFile(java.io.File f)
Reads parameters from a file.
|
Modifier and Type | Method and Description |
---|---|
void |
Parameters.addParameters(Parameters pp)
Adds the parameters from another set of parameters
|
Constructor and Description |
---|
Simulate(java.util.Map<java.lang.String,Model> m,
java.util.Map<java.lang.String,Tree> t,
Parameters p)
Creates an object to simulate data for a given set of models and trees,
parameters and unobserved states.
|
Simulate(java.util.Map<java.lang.String,Model> m,
java.util.Map<java.lang.String,Tree> t,
Parameters p,
Alignment unobserved)
Creates an object to simulate data for a given set of models and trees,
parameters and unobserved states.
|
Simulate(java.util.Map<java.lang.String,Model> m,
Tree t,
Parameters p)
Creates an object to simulate data for a given set of models, a tree and parameters.
|
Simulate(java.util.Map<java.lang.String,Model> m,
Tree t,
Parameters p,
Alignment unobserved)
Creates an object to simulate data for a given set of models, a tree, parameters
and unobserved states.
|
Simulate(Model m,
java.util.Map<java.lang.String,Tree> t,
Parameters p)
Creates an object to simulate data for a given model, set of trees, parameters
and unobserved states.
|
Simulate(Model m,
java.util.Map<java.lang.String,Tree> t,
Parameters p,
Alignment unobserved)
Creates an object to simulate data for a given model, set of trees, parameters
and unobserved states.
|
Simulate(Model m,
Tree t,
Parameters p)
Creates an object to simulate data for a given model, tree and parameters.
|
Simulate(Model m,
Tree t,
Parameters p,
Alignment unobserved)
Creates an object to simulate data for a given model, tree, parameters
and unobserved states.
|
Modifier and Type | Method and Description |
---|---|
Parameters |
Tree.getParameters()
Returns a Parameters object containing a parameter for each branch length.
|
Parameters |
Tree.getParametersForEstimation()
Returns a Parameters object containing a parameter for each branch length.
|
Constructor and Description |
---|
Tree(Tree old,
Parameters p)
Duplicates a tree topology while replacing branch lengths using
the appropriate parameter
|